Skip to main content

Quantum Measurements and State Reduction

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5757 Accesses

Abstract

In quantum mechanics, the state reduction due to a measurement is called the collapse of a wavefunction. Its study is often perceived as a somewhat mystical phenomenon because of the lack of proper understanding. As a result, the formalism for the state reduction is often somewhat inadequately presented. However, as will be explained in Sect. 7.1, the state reduction due to a measurement follows automatically from the formulation of quantum mechanics, as described in Sect. 1.2. Starting with the formulation of quantum mechanics given in Sects. 1.2 and 1.4, we give a detailed formulation of the state reduction due to a measurement. In Sect. 7.2, we discuss the relation with the uncertainty relation using these concepts. Finally, in Sect. 7.4, we propose a measurement with negligible state reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Normalization here implies the division of the matrix by its trace such that its trace is equal to 1.

  2. 2.

    It can also be understood as follows: the state reduction due to any measurement by PVM can be characterized as the state reduction satisfying the projection hypothesis, followed by the state evolution \(\kappa _\omega \). Indeed, many texts state that the state reduction due to any measurement is given by the projection hypothesis. Theorem 7.2 guarantees their correctness in a sense.

  3. 3.

    As discussed in Sect. 6.2, \(\varDelta _4({\varvec{\kappa }},Y,\rho )\) also has the meaning of the amount of the loss of the SLD Fisher information. Therefore, this inequality is interesting from the point of view of estimation theory. It indicates the naturalness of the SLD inner product. This is in contrast to the naturalness of the Bogoljubov inner product from a geometrical viewpoint.

  4. 4.

    The equality holds when an appropriate POVM \({\varvec{M}}\) is performed in a quantum two-level system [11]. For its more general equality condition, see Exercise 7.17.

  5. 5.

    This definition of c is the generalization of that in Theorem 7.6. See Exercise 7.22.

References

  1. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). (Originally appeared in German in 1932)

    Google Scholar 

  2. M.A. Naǐmark, Comptes Rendus (Doklady) de l’Acadenie des Sience de l’URSS, 41, 9, 359 (1943)

    Google Scholar 

  3. M. Ozawa, Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Ozawa, An operational approach to quantum state reduction. Ann. Phys. 259, 121–137 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H.P. Robertson, The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  6. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  7. M. Ozawa, Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  8. M. Ozawa, Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A 318, 21–29 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Ozawa, Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 311, 350–416 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Ozawa, Uncertainty principle for quantum instruments and computing. Int. J. Quant. Inf. 1, 569–588 (2003)

    Article  MATH  Google Scholar 

  11. H. Nagaoka, A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to quantum estimation theory. Trans. Jpn. Soc. Ind. Appl. Math. 1, 43–56 (1991) (Originally in Japanese; also appeared as Chap. 11 of Asymptotic Theory of Quantum Statistical Inference, ed. by M. Hayashi)

    Google Scholar 

  12. H. Maassen, J. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. P.J. Coles, R. Colbeck, L. Yu, M. Zwolak, Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)

    Article  ADS  Google Scholar 

  14. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Tomamichel, M. Berta, M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55, 082206 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J.M. Renes, J.-C. Boileau, Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  17. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  18. M. Hayashi, K. Matsumoto, Simple construction of quantum universal variable-length source coding. Quant. Inf. Comput. 2, Special Issue, 519–529 (2002)

    Google Scholar 

  19. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982); originally published in Russian (1980)

    Google Scholar 

  20. E.B. Davies, J.T. Lewis, An operational approach to quantum probability. Commun. Math. Phys. 17, 239 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Ozawa, Measurements of nondegenerate discrete observables. Phys. Rev. A 63, 062101 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Ozawa, Operations, disturbance, and simultaneous measurability. Phys. Rev. A 62, 032109 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Hayashi, F. Sakaguchi, Subnormal operators regarded as generalized observables and compound-system-type normal extension related to su(1,1). J. Phys. A Math. Gen. 33, 7793–7820 (2000)

    Article  ADS  MATH  Google Scholar 

  24. A.S. Holevo, Statistical Structure of Quantum Theory, vol. 67, Lecture Notes in Physics (Springer, Berlin, 2001)

    Google Scholar 

  25. P. Busch, M. Grabowski, P.J. Lahti, Operational Quantum Physics, vol. 31, Lecture Notes in Physics (Springer, Berlin, 1997)

    Google Scholar 

  26. M. Ozawa, Operational characterization of simultaneous measurements in quantum mechanics. Phys. Lett. A 275, 5–11 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. E. Arthurs, J.L. Kelly Jr., On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Tech. 44, 725–729 (1965)

    Article  Google Scholar 

  28. E. Arthurs, M.S. Goodman, Quantum correlations: a generalized Heisenberg uncertainty relation. Phys. Rev. Lett. 60, 2447–2449 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Ishikawa, Uncertainty relations in simultaneous measurements for arbitrary observables. Rep. Math. Phys. 29, 257–273 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Ozawa, Quantum limits of measurements and uncertainty principle, in Quantum Aspects of Optical Communications, Lecture Notes in Physics, vol. 378, eds. by C. Bendjaballah, O. Hirota, S. Reynaud. (Springer, Berlin, 1991), pp. 3–17

    Google Scholar 

  31. M. Hayashi, Simultaneous measurements of non-commuting physical quantities. RIMS koukyuroku Kyoto University, No. 1099, 96–118 (1999). (in Japanese)

    Google Scholar 

  32. R.L. Frank, E.H. Lieb, Monotonicity of a relative Renyi entropy. J. Math. Phys. 54, 122201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. C.H. Bennett, A.W. Harrow, S. Lloyd, Universal quantum data compression via nondestructive tomography. Phys. Rev. A 73, 032336 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). Quantum Measurements and State Reduction. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics