Skip to main content

Superhydrophobic and Superoleophobic Surfaces in Composite Materials

  • Chapter
  • First Online:
Composite Materials

Abstract

Liquid-repelling surfaces have received tremendous attention owing to their unique self-cleaning, anti-icing, anti-sticking, and antireflective properties. Various natural surfaces, owing to their specific surface structure, exhibit high water/oil repellency. Study of such naturally occurring superhydrophobic/superoleophobic surfaces has led to the understanding that the wettability of surfaces depends on their surface energy and surface structure. Surfaces with multilevel roughness exhibit high contact angles due to formation of air–liquid interfaces. The present chapter reviews the basic physical understanding and the structure–property correlations of the liquid-repelling surfaces. The chapter further explores the structures of various naturally occurring liquid-repellent surfaces and reports the recent progress achieved toward the development of artificial liquid-repellent surfaces by mimicking the natural ones. Finally, various techniques being employed to fabricate such surfaces have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon JE (1991) The new science of strong materials: or why you don’t fall through the floor. Penguin, London

    Google Scholar 

  2. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1):1–108

    Article  Google Scholar 

  3. Guo H-Y, Li Q, Zhao H-P, Zhou K, Feng X-Q (2015) Functional map of biological and biomimetic materials with hierarchical surface structures. RSC Adv 5:66901

    Article  Google Scholar 

  4. Korhonen JT, Huhtamäki T, Ikkala O, Ras RHA (2013) Reliable measurement of the receding contact angle. Langmuir 29:3858

    Article  Google Scholar 

  5. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105

    Article  Google Scholar 

  6. Shirtcliffe NJ, McHale G, Atherton S, Newton MI (2010) An introduction to superhydrophobicity. Adv Colloid Interface Sci 161(1):124–138

    Article  Google Scholar 

  7. Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11(1):371–400

    Article  Google Scholar 

  8. De GPG (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827

    Article  Google Scholar 

  9. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 85:65–87

    Article  Google Scholar 

  10. Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Springer Science & Business Media, Heidelberg

    Book  Google Scholar 

  11. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  12. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  13. Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20):7777–7782

    Article  Google Scholar 

  14. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  Google Scholar 

  15. Guo Z, Liu W, Su BL (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci 353(2):335–355

    Article  Google Scholar 

  16. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172(6):1103–1112

    Article  Google Scholar 

  17. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137

    Article  Google Scholar 

  18. Lee SM, Kwon TH (2007) Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. J Micromech Microeng 17(4):687

    Article  Google Scholar 

  19. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8):4114–4119

    Article  Google Scholar 

  20. Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 32(7013):36

    Article  Google Scholar 

  21. Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463(7281):640–643

    Article  Google Scholar 

  22. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    Article  Google Scholar 

  23. Genzer J, Marmur A (2008) Biological and synthetic self-cleaning surfaces. MRS bull 33(08):742–746

    Article  Google Scholar 

  24. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E (2007) Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. J Colloid Interface Sci 311:212–216

    Article  Google Scholar 

  25. Bhushan B (2009) Biomimetics: lessons from nature – an overview. Philos Trans R Soc Lond Ser A 367(1893):1445–1486

    Article  Google Scholar 

  26. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21(6):665–669

    Article  Google Scholar 

  27. Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, Mayer J, Hoffmann S, Riederer M, Riedel M, Baumgartner W (2010) Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol 213:1115

    Article  Google Scholar 

  28. Zhang J, Li J, Han Y (2004) Superhydrophobic PTFE surfaces by extension. Macromol Rapid Commun 25(11):1105–1108

    Article  Google Scholar 

  29. Shiu JY, Kuo CW and Chen P (2004) Fabrication of tunable superhydrophobic surfaces. Proc. SPIE 5648, Smart Materials III, pp 325–332

    Google Scholar 

  30. Yabu H, Shimomura M (2005) Single-step fabrication of transparent superhydrophobic porous polymer films. Chem Mater 17(21):5231–5234

    Article  Google Scholar 

  31. Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44(37):6009–6012

    Article  Google Scholar 

  32. Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11(4):193–202

    Article  Google Scholar 

  33. Khorasani MT, Mirzadeh H, Kermani Z (2005) Wettability of porous polydimethylsiloxane surface: morphology study. Appl Surf Sci 242(3):339–345

    Article  Google Scholar 

  34. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981

    Article  Google Scholar 

  35. Ma M, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21(12):5549–5554

    Article  Google Scholar 

  36. Lu X, Zhang C, Han Y (2004) Low‐density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromol Rapid Commun 25(18):1606–1610

    Article  Google Scholar 

  37. Jiang L, Zhao Y, Zhai J (2004) A lotus‐leaf‐like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem 116(33):4438–4441

    Article  Google Scholar 

  38. Zhang J, Lu X, Huang W, Han Y (2005) Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun 26:477–480

    Article  Google Scholar 

  39. Zhao N, Xu J, Xie QD, Weng LH, Guo XL, Zhang XL et al (2005) Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol Rapid Commun 26:1075–1080

    Article  Google Scholar 

  40. Mohammadi R, Wassink J, Amirfazli A (2004) Effect of surfactants on wetting of super-hydrophobic surfaces. Langmuir 20:9657–9662

    Article  Google Scholar 

  41. Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126(1):62–63

    Article  Google Scholar 

  42. Yang YH, Li ZY, Wang B, Wang CX, Chen DH, Yang GW (2005) Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity. J Phys Condens Matter 17(35):5441

    Article  Google Scholar 

  43. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44(32):5115–5118

    Article  Google Scholar 

  44. Zhang J, Huang W, Han Y (2006) A composite polymer film with both superhydrophobicity and superoleophilicity. Macromol Rapid Commun 27:804

    Article  Google Scholar 

  45. Cui Z, Yin L, Wang Q, Ding J, Chen Q (2009) A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films. J Colloid Interface Sci 337:531

    Article  Google Scholar 

  46. Milionis A, Ruffilli R, Bayer IS (2014) Superhydrophobic nanocomposites from biodegradable thermoplastic starch composites (Mater-Bi®): hydrophobic nano-silica and lycopodium spores. RSC Adv 4:34395

    Article  Google Scholar 

  47. Razmjou A, Arifin E, Dong G, Mansouri J, Chen V (2012) Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J Membr Sci 415–416:850

    Article  Google Scholar 

  48. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701

    Article  Google Scholar 

  49. Wang K, Hu N-X, Xu G, Qi Y (2011) Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer. Carbon 49:1769

    Article  Google Scholar 

  50. Jung YC, Bhushan B (2009) Mechanically durable carbon nanotube – composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano 3:4155

    Article  Google Scholar 

  51. D-a Z, Mei S, Wang Z, Li H, Shi Z, Jin Z (2011) Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon 49:5166

    Article  Google Scholar 

  52. Asmatulu R, Ceylan M, Nuraje N (2011) Study of superhydrophobic electrospun nanocomposite fibers for energy systems. Langmuir 27:504

    Article  Google Scholar 

  53. Liu K, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58(4):503–564

    Article  Google Scholar 

  54. Cao LL, Hu HH, Gao D (2007) Design and fabrication of micro-textures for inducing a superhydrophobic behaviour on hydrophilic materials. Langmuir 23:4310–4314

    Article  Google Scholar 

  55. Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52:165–170

    Article  Google Scholar 

  56. Cao L, Gao D (2010) Transparent superhydrophobic and highly oleophobic coatings. Faraday Discuss 146:57–65

    Article  Google Scholar 

  57. Kumar RTR, Mogensen KB, Bøggild P (2010) Simple approach to superamphiphobic overhanging silicon nanostructures. J Phys Chem C 114(7):2936–2940

    Article  Google Scholar 

  58. Cao L, Price TP, Weiss M, Gao D (2008) Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24(5):1640–1643

    Article  Google Scholar 

  59. Aulin C, Yun SH, Wågberg L, Lindström T (2009) Design of highly oleophobic cellulose surfaces from structured silicon templates. ACS Appl Mater Interfaces 1(11):2443–2452

    Article  Google Scholar 

  60. Tuteja A, Choi WJ, McKinley GH, Cohen RE, Rubner MF (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758

    Article  Google Scholar 

  61. Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23(6):3157–3161

    Article  Google Scholar 

  62. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622

    Article  Google Scholar 

  63. Joly L, Biben T (2009) Wetting and friction on superoleophobic surfaces. Soft Matter 5(13):2549–2557

    Google Scholar 

  64. Zhao H, Law KY, Sambhy V (2011) Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir 27(10):5927–5935

    Article  Google Scholar 

  65. Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Kolodner P, Krupenkin TN (2008) Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 24:9

    Article  Google Scholar 

  66. Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L (2011) Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter 7(13):5948–5951

    Article  Google Scholar 

  67. Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25:3240–3248

    Article  Google Scholar 

  68. Darmanin T, Guittard F (2015) Superhydrophobic and superoleophobic properties in nature. Mater Today 18(5):273–285

    Article  Google Scholar 

  69. Rakitov R, Gorb SN (2013) Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc R Soc Lond Ser B 280(1752):20122391

    Article  Google Scholar 

  70. Helbig R, Nickerl J, Neinhuis C, Werner C (2011) Smart skin patterns protect springtails. PLOS One 6(9):e25105

    Article  Google Scholar 

  71. Bhushan B (2011) Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J Nanotechnol 2(1):66–84

    Article  Google Scholar 

  72. Cai Y, Lin L, Xue Z, Liu M, Wang S, Jiang L (2014) Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv Funct Mater 24:809

    Article  Google Scholar 

  73. Yost FG, Michael FR, Eisenmann ET (1995) Extensive wetting due to roughness. Acta Metall Mater 43(1):299–305

    Article  Google Scholar 

  74. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100(50):19512–19517

    Article  Google Scholar 

  75. Semal S, Blake TD, Geskin V, De Ruijter MJ, Castelein G, De Coninck J (1999) Influence of surface roughness on wetting dynamics. Langmuir 15(25):8765–8770

    Article  Google Scholar 

  76. Burton Z, Bhushan B (2005) Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett 5(8):1607–1613

    Article  Google Scholar 

  77. Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5(7):1386–1393

    Article  Google Scholar 

  78. Kwon Y, Patankar N, Choi J, Lee J (2009) Design of surface hierarchy for extreme hydrophobicity. Langmuir 25(11):6129–6136

    Article  Google Scholar 

  79. Wong TS, Huang APH, Ho CM (2009) Wetting behaviors of individual nanostructures. Langmuir 25(12):6599–6603

    Article  Google Scholar 

  80. Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21(3):956–961

    Article  Google Scholar 

  81. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  82. Choi YW, Han JE, Lee S, Sohn D (2009) Preparation of a superhydrophobic film with UV imprinting technology. Macromol Res 17(10):821–824

    Article  Google Scholar 

  83. Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3(3):171–176

    Article  Google Scholar 

  84. Zhang X, Zhang J, Ren Z, Li X, Zhang X, Zhu D, Yang B (2009) Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir 25(13):7375–7382

    Article  Google Scholar 

  85. Jeong HE, Kwak MK, Park CI, Suh KY (2009) Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. J Colloid Interface Sci 339(1):202–207

    Article  Google Scholar 

  86. Sato O, Kubo S, Gu ZZ (2008) Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc Chem Res 42(1):1–10

    Article  Google Scholar 

  87. Cho WK, Choi IS (2008) Fabrication of hairy polymeric films inspired by geckos: wetting and high adhesion properties. Adv Funct Mater 18(7):1089–1096

    Article  Google Scholar 

  88. Yuan Z, Chen H, Tang J, Gong H, Liu Y, Wang Z, Chen X (2007) A novel preparation of polystyrene film with a superhydrophobic surface using a template method. J Phys D: Appl Phys 40(11):3485

    Article  Google Scholar 

  89. Berendsen CW, Škereň M, Najdek D, Černý F (2009) Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal imprinting. Appl Surf Sci 255(23):9305–9310

    Article  Google Scholar 

  90. Winkleman A, Gotesman G, Yoffe A, Naaman R (2008) Immobilizing a drop of water: fabricating highly hydrophobic surfaces that pin water droplets. Nano Lett 8(4):1241–1245

    Article  Google Scholar 

  91. Manca M, Cortese B, Viola I, Aricò AS, Cingolani R, Gigli G (2008) Influence of chemistry and topology effects on superhydrophobic CF4-plasma-treated poly (dimethylsiloxane) (PDMS). Langmuir 24(5):1833–1843

    Article  Google Scholar 

  92. Tsougeni K, Papageorgiou D, Tserepi A, Gogolides E (2010) “Smart” polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving. Lab Chip 10(4):462–469

    Article  Google Scholar 

  93. Lee SM, Jung ID, Ko JS (2008) The effect of the surface wettability of nanoprotrusions formed on network-type microstructures. J Micromech Microeng 18(12):125007

    Article  Google Scholar 

  94. Borras A, Barranco A, González-Elipe AR (2008) Reversible superhydrophobic to superhydrophilic conversion of Ag@ TiO2 composite nanofiber surfaces. Langmuir 24(15):8021–8026

    Article  Google Scholar 

  95. Kirkland JJ (1965) Porous thin-layer modified glass bead supports for gas liquid chromatography. Anal Chem 37(12):1458–1461

    Article  Google Scholar 

  96. Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594

    Article  Google Scholar 

  97. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  Google Scholar 

  98. Richardson JJ, Björnmalm M and Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491 (1–11)

    Google Scholar 

  99. Ott P, Trenkenschuh K, Gensel J, Fery A, Laschewsky A (2010) Free-standing membranes via covalent cross-linking of polyelectrolyte multilayers with complementary reactivity. Langmuir 26(23):18182–18188

    Article  Google Scholar 

  100. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid‐templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2201–2205

    Article  Google Scholar 

  101. Zhang X, Chen H, Zhang H (2007) Layer-by-layer assembly: from conventional to unconventional methods. Chem Commun 14:1395–1405

    Article  Google Scholar 

  102. Wu Z, Lee D, Rubner MF, Cohen RE (2007) Structural color in porous, superhydrophilic, and self‐cleaning SiO2/TiO2 Bragg stacks. Small 3(8):1445–1451

    Article  Google Scholar 

  103. Zhao Y, Li M, Lu Q, Shi Z (2008) Superhydrophobic polyimide films with a hierarchical topography: combined replica molding and layer-by-layer assembly. Langmuir 24(21):12651–12657

    Article  Google Scholar 

  104. Hsieh CT, Chen WY, Wu FL, Shen YS (2008) Fabrication and superhydrophobic behavior of fluorinated silica nanosphere arrays. J Adhes Sci Technol 22(3-4):265–275

    Article  Google Scholar 

  105. Min WL, Jiang P, Jiang B (2008) Large-scale assembly of colloidal nanoparticles and fabrication of periodic sub wavelength structures. Nanotechnology 19(47):475604

    Article  Google Scholar 

  106. Zhu Y, Li J, Wan M, Jiang L (2008) Superhydrophobic 3D microstructures assembled from 1D nanofibers of polyaniline. Macromol Rapid Commun 29(3):239–243

    Article  Google Scholar 

  107. Xue CH, Jia ST, Zhang J, Tian LQ (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517(16):4593–4598

    Article  Google Scholar 

  108. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105

    Article  Google Scholar 

  109. Chen H, Yuan Z, Zhang J, Liu Y, Li K, Zhao D, Tang J (2009) Preparation, characterization and wettability of porous superhydrophobic poly (vinyl chloride) surface. J Porous Mater 16(4):447–451

    Article  Google Scholar 

  110. Li X, Chen G, Ma Y, Feng L, Zhao H, Jiang L, Wang F (2006) Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent–nonsolvent coating. Polymer 47(2):506–509

    Article  Google Scholar 

  111. Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376(1):140–143

    Article  Google Scholar 

  112. Song W, Veiga DD, Custódio CA, Mano JF (2009) Bioinspired degradable substrates with extreme wettability properties. Adv Mater 21(18):1830–1834

    Article  Google Scholar 

  113. Zhu M, Zuo W, Yu H, Yang W, Chen Y (2006) Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J Mater Sci 41(12):3793–3797

    Article  Google Scholar 

  114. Zheng J, He A, Li J, Xu J, Han CC (2006) Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer 47(20):7095–7102

    Article  Google Scholar 

  115. Ding B, Ogawa T, Kim J, Fujimoto K, Shiratori S (2008) Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films 516(9):2495–2501

    Article  Google Scholar 

  116. Li X, Ding B, Lin J, Yu J, Sun G (2009) Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J Phys Chem C 113(47):20452–20457

    Article  Google Scholar 

  117. Burkarter E, Saul CK, Thomazi F, Cruz NC, Roman LS, Schreiner WH (2007) Superhydrophobic electrosprayed PTFE. Surf Coat Technol 202(1):194–198

    Article  Google Scholar 

  118. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6(10):2305–2312

    Article  Google Scholar 

  119. Bravo J, Zhai L, Wu Z, Cohen RE, Rubner MF (2007) Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23(13):7293–7298

    Article  Google Scholar 

  120. Cebeci FÇ, Wu Z, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 22(6):2856–2862

    Article  Google Scholar 

  121. Zhai L, Cebeci FC, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4(7):1349–1353

    Article  Google Scholar 

  122. Chunder A, Etcheverry K, Londe G, Cho HJ, Zhai L (2009) Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control. Colloids Surf A 333(1):187–193

    Article  Google Scholar 

  123. Lvov Y, Ariga K, Onda M, Ichinose I, Kunitake T (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13(23):6195–6203

    Article  Google Scholar 

  124. Ling XY, Phang IY, Vancso GJ, Huskens J, Reinhoudt DN (2009) Stable and transparent superhydrophobic nanoparticle films. Langmuir 25(5):3260–3263

    Article  Google Scholar 

  125. Manca M, Cannavale A, De Marco L, Arico AS, Cingolani R, Gigli G (2009) Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol–gel processing. Langmuir 25(11):6357–6362

    Article  Google Scholar 

  126. Liu Y, Chen X, Xin JH (2006) Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology 17(13):3259

    Article  Google Scholar 

  127. Milella A, Di Mundo R, Palumbo F, Favia P, Fracassi F, d’Agostino R (2009) Plasma nanostructuring of polymers: different routes to superhydrophobicity. Plasma Processes Polym 6(6‐7):460–466

    Article  Google Scholar 

  128. Han ZJ, Tay BK, Shakerzadeh M, Ostrikov K (2009) Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Appl Phys Lett 94(22):223106

    Article  Google Scholar 

  129. Ishizaki T, Saito N, InoueY BM, Takai O (2007) Fabrication and characterization of ultra-water-repellent alumina–silica composite films. J Phys D: Appl Phys 40(1):192

    Article  Google Scholar 

  130. Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86

    Article  Google Scholar 

  131. Soeno T, Inokuchi K, Shiratori S (2004) Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films. Appl Surf Sci 237(1):539–543

    Article  Google Scholar 

  132. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6(10):2305–2312

    Article  Google Scholar 

  133. Lai Y, Lin Z, Huang J, Sun L, Chen Z, Lin C (2010) Controllable construction of ZnO/TiO2 patterning nanostructures by superhydrophilic/superhydrophobic templates. New J Chem 34(1):44–51

    Article  Google Scholar 

  134. Amigoni S, Taffin de Givenchy E, Dufay M, Guittard F (2009) Covalent layer-by-layer assembled superhydrophobic organic–inorganic hybrid films. Langmuir 25(18):11073–11077

    Article  Google Scholar 

  135. Tomšič B, Simončič B, Orel B, Černe L, Tavčer PF, Zorko M, Kovač J (2008) Sol–gel coating of cellulose fibers with antimicrobial and repellent properties. J Sol-Gel Sci Technol 47(1):44–57

    Article  Google Scholar 

  136. Vilcnik A, Jerman I, Šurca Vuk A, Kozelj M, Orel B, Tomšič B, Kovac J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics. Langmuir 25(10):5869–5880

    Article  Google Scholar 

  137. Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22(25):12562–12567

    Article  Google Scholar 

  138. Yan L, Lv H, Wang C, Yuan X (2011) Hydro-oleophobic silica antireflective films with high laser-damage threshold. Opt Laser Technol 43(1):232–236

    Article  Google Scholar 

  139. Zhang J, Seeger S (2011) Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angew Chem Int Ed 50(29):6652–6656

    Article  Google Scholar 

  140. Zhao K, Liu KS, Li JF, Wang WH, Jiang L (2009) Superamphiphobic CaLi-based bulk metallic glasses. Scr Mater 60(4):225–227

    Article  Google Scholar 

  141. Xiong D, Liu G, Hong L, Duncan ES (2011) Superamphiphobic diblock copolymer coatings. Chem Mater 23(19):4357–4366

    Article  Google Scholar 

  142. Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A, Ras RH (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27(5):1930–1934

    Article  Google Scholar 

  143. Jin H, Marmur A, Ikkala O, Ras RH (2012) Vapour-driven Marangoni propulsion: continuous, prolonged and tunable motion. Chem Sci 3(8):2526–2529

    Article  Google Scholar 

  144. Kim TI, Tahk D, Lee HH (2009) Wettability-controllable super water-and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir 25(11):6576–6579

    Article  Google Scholar 

  145. Das A, Schutzius TM, Bayer IS, Megaridis CM (2012) Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon 50(3):1346–1354

    Article  Google Scholar 

  146. Yuan JJ, Jin RH (2011) Direct generation of silica nanowire-based thin film on various substrates with tunable surface nanostructure and extreme repellence toward complex liquids. Langmuir 27(15):9588–9596

    Article  Google Scholar 

  147. Uyanik M, Arpac E, Schmidt H, Akarsu M, Sayilkan F, Sayilkan H (2006) Heat‐resistant hydrophobic–oleophobic coatings. J Appl Polym Sci 100(3):2386–2392

    Article  Google Scholar 

  148. Kwon G, Kota A, Li Y, Sohani A, Mabry JM, Tuteja A (2012) On‐demand separation of oil‐water mixtures. Adv Mater 24(27):3666–3671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manna, O., Das, S.K., Sharma, R., Kar, K.K. (2017). Superhydrophobic and Superoleophobic Surfaces in Composite Materials. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_19

Download citation

Publish with us

Policies and ethics