Skip to main content

Excluded-Volume Effects

  • Chapter
  • First Online:
Helical Wormlike Chains in Polymer Solutions

Abstract

This chapter deals with the theory of the excluded-volume effects in dilute solution, such as various kinds of expansion factors and the second and third virial coefficients, developed on the basis of the perturbed HW chain which enables us to take account of both effects of excluded volume and chain stiffness. Necessarily, the derived theory is no longer the two-parameter (TP) theory [1], but it may give an explanation of experimental results [2] obtained in this field since the late 1970s, which all indicate that the TP theory breaks down. There are also some causes other than chain stiffness that lead to its breakdown. On the experimental side, it has for long been a difficult task to determine accurately the expansion factors since it is impossible to determine directly unperturbed chain dimensions in good solvents. However, this has proved possible by extending the measurement range to the oligomer region where the excluded-volume effect disappears. Thus an extensive comparison of the new non-TP theory with experiment is made mainly using such experimental data recently obtained for several flexible polymers. As for semiflexible polymers with small excluded volume, some remarks are made without a detailed analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971). Its electronic edition is available on-line at the URL: http://hdl.handle.net/2433/50527

  2. H. Fujita, Polymer Solutions (Elsevier, Amsterdam, 1990)

    Google Scholar 

  3. H. Yamakawa, W.H. Stockmayer, J. Chem. Phys. 57, 2843 (1972)

    Article  CAS  Google Scholar 

  4. H. Yamakawa, J. Shimada, J. Chem. Phys. 83, 2607 (1985)

    Article  CAS  Google Scholar 

  5. J. Shimada, H. Yamakawa, J. Chem. Phys. 85, 591 (1986)

    Article  CAS  Google Scholar 

  6. Z.Y. Chen, J. Noolandi, J. Chem. Phys. 96, 1540 (1992)

    Article  CAS  Google Scholar 

  7. F. Abe, Y. Einaga, T. Yoshizaki, H. Yamakawa, Macromolecules 26, 1884 (1993)

    Article  CAS  Google Scholar 

  8. G. Weill, J. des Cloizeaux, J. Phys. (Paris) 40, 99 (1979)

    Google Scholar 

  9. C. Domb, A.J. Barrett, Polymer 17, 179 (1976)

    Article  CAS  Google Scholar 

  10. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969)

    Google Scholar 

  11. M. Osa, Y. Ueno, T. Yoshizaki, H. Yamakawa, Macromolecules 34, 6402 (2001)

    Article  CAS  Google Scholar 

  12. F. Abe, K. Horita, Y. Einaga, H. Yamakawa, Macromolecules 27, 725 (1994)

    Article  CAS  Google Scholar 

  13. M. Kamijo, F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 28, 1095 (1995)

    Article  CAS  Google Scholar 

  14. K. Horita, F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 26, 5067 (1993)

    Article  CAS  Google Scholar 

  15. Y. Miyaki, Ph.D. thesis, Osaka University, Osaka, 1981

    Google Scholar 

  16. T. Arai, F. Abe, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 28, 3609 (1995)

    Article  CAS  Google Scholar 

  17. K. Horita, N. Sawatari, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 28, 4455 (1995)

    Article  CAS  Google Scholar 

  18. M. Yamada, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 30, 7166 (1997)

    Article  CAS  Google Scholar 

  19. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 26, 1891 (1993)

    Article  CAS  Google Scholar 

  20. T. Norisuye, H. Fujita, Polym. J. 14, 143 (1982)

    Article  CAS  Google Scholar 

  21. T. Norisuye, A. Tsuboi, A. Teramoto, Polym. J. 28, 357 (1996)

    Article  CAS  Google Scholar 

  22. A.J. Barrett, Macromolecules 17, 1566 (1984)

    Article  CAS  Google Scholar 

  23. A.J. Barrett, Macromolecules 17, 1561 (1984)

    Article  CAS  Google Scholar 

  24. J. Shimada, H. Yamakawa, J. Polym. Sci. Polym. Phys. Ed. 16, 1927 (1978)

    Article  CAS  Google Scholar 

  25. W.H. Stockmayer, A.C. Albrecht, J. Polym. Sci. 32, 215 (1958)

    Article  CAS  Google Scholar 

  26. M. Fixman, J. Chem. Phys. 42, 3831 (1965)

    Article  CAS  Google Scholar 

  27. C.W. Pyun, M. Fixman, J. Chem. Phys. 42, 3838 (1965)

    Article  CAS  Google Scholar 

  28. H. Yamakawa, G. Tanaka, J. Chem. Phys. 55, 3188 (1971)

    Article  Google Scholar 

  29. H. Yamakawa, T. Yoshizaki, J. Chem. Phys. 91, 7900 (1989)

    Article  CAS  Google Scholar 

  30. H. Yamakawa, T. Yoshizaki, Macromolecules 28, 3604 (1995)

    Article  CAS  Google Scholar 

  31. T. Yoshizaki, H. Yamakawa, J. Chem. Phys. 105, 5618 (1996)

    Article  CAS  Google Scholar 

  32. B.H. Zimm, Macromolecules 24, 592 (1980)

    Article  Google Scholar 

  33. T. Yamada, H. Koyama, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 26, 2566 (1993)

    Article  CAS  Google Scholar 

  34. Y. Tominaga, I. Suda, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 35, 1381 (2002)

    Article  CAS  Google Scholar 

  35. B.K. Varma, Y. Fujita, M. Takahashi, T. Nose, J. Polym. Sci. Polym. Phys. Ed. 22, 1781 (1984)

    Article  CAS  Google Scholar 

  36. L.J. Fetters, N. Hadjichristidis, J.S. Lindner, J.W. Mays, W.W. Wilson, Macromolecules 24, 3127 (1991)

    Article  CAS  Google Scholar 

  37. Y. Tsunashima, M. Hirata, N. Nemoto, M. Kurata, Macromolecules 21, 1107 (1988)

    Article  CAS  Google Scholar 

  38. T. Arai, N. Sawatari, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 29, 2309 (1996)

    Article  CAS  Google Scholar 

  39. M. Osa, F. Abe, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 29, 2302 (1996)

    Article  CAS  Google Scholar 

  40. T. Arai, F. Abe, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules 28, 5485 (1995)

    Google Scholar 

  41. P. Vidakovic, F. Rondelez, Macromolecules 16, 253 (1983)

    Article  CAS  Google Scholar 

  42. H. Yamakawa, Macromolecules 25, 1912 (1992)

    Article  CAS  Google Scholar 

  43. A.J. Barrett, Macromolecules 18, 196 (1985)

    Article  CAS  Google Scholar 

  44. B.G. Nickel, Macromolecules 24, 1358 (1991)

    Article  CAS  Google Scholar 

  45. Z.Y. Chen, J. Noolandi, Macromolecules 25, 4978 (1992)

    Article  CAS  Google Scholar 

  46. H. Yamakawa, J. Chem. Phys. 45, 2606 (1966)

    Article  CAS  Google Scholar 

  47. B.J. Cherayil, J.F. Douglas, K.F. Freed, J. Chem. Phys. 83, 5293 (1985)

    Article  CAS  Google Scholar 

  48. Y. Nakamura, T. Norisuye, A. Teramoto, Macromolecules 24, 4904 (1991)

    Article  CAS  Google Scholar 

  49. H. Yamakawa, T. Yoshizaki, J. Chem. Phys. 119, 1257 (2003)

    Article  CAS  Google Scholar 

  50. H. Yamakawa, F. Abe, Y. Einaga, Macromolecules 27, 3272 (1994)

    Article  CAS  Google Scholar 

  51. K. Huber, W.H. Stockmayer, Macromolecules 20, 1400 (1987)

    Article  CAS  Google Scholar 

  52. T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, H. Yamakawa, Macromolecules 23, 290 (1990)

    Article  CAS  Google Scholar 

  53. Y. Tamai, T. Konishi, Y. Einaga, M. Fujii, H. Yamakawa, Macromolecules 23, 4067 (1990)

    Article  CAS  Google Scholar 

  54. Y. Einaga, F. Abe, H. Yamakawa, Macromolecules 26, 6243 (1993)

    Article  CAS  Google Scholar 

  55. W. Tokuhara, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 36, 5311 (2003)

    Article  CAS  Google Scholar 

  56. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 27, 3262 (1994)

    Article  CAS  Google Scholar 

  57. H. Sotobayashi, K. Ueberreiter, Z. Elektrochem. 67, 178 (1963)

    Article  CAS  Google Scholar 

  58. J. Springer, K. Ueberreiter, E. Moeller, Z. Elektrochem. 69, 494 (1965)

    Article  CAS  Google Scholar 

  59. Y. Miyaki, Y. Einaga, H. Fujita, Macromolecules 11, 1180 (1978)

    Article  CAS  Google Scholar 

  60. T. Hirosye, Y. Einaga, H. Fujita, Polym. J. 11, 819 (1979)

    Article  CAS  Google Scholar 

  61. H. Yamakawa, F. Abe, Y. Einaga, Macromolecules 26, 1898 (1993)

    Article  CAS  Google Scholar 

  62. M. Kamijo, F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 28, 4159 (1995)

    Article  CAS  Google Scholar 

  63. T. Norisuye, Y. Nakamura, Macromolecules 27, 2054 (1994)

    Article  CAS  Google Scholar 

  64. B.H. Zimm, J. Chem. Phys. 14, 164 (1946)

    Article  CAS  Google Scholar 

  65. W.H. Stockmayer, Makromol. Chem. 35, 54 (1960)

    Article  CAS  Google Scholar 

  66. H. Yamakawa, J. Chem. Phys. 42, 1764 (1965)

    Article  CAS  Google Scholar 

  67. T. Norisuye, Y. Nakamura, K. Akasaka, Macromolecules 26, 3791 (1993)

    Article  CAS  Google Scholar 

  68. W.H. Stockmayer, E.F. Casassa, J. Chem. Phys. 20, 1560 (1952)

    Article  CAS  Google Scholar 

  69. T. Sato, T. Norisuye, H. Fujita, J. Polym. Sci. B: Polym. Phys. 25, 1 (1987)

    Article  CAS  Google Scholar 

  70. Y. Nakamura, T. Norisuye, A. Teramoto, J. Polym. Sci. B: Polym. Phys. 29, 153 (1991)

    Article  CAS  Google Scholar 

  71. M. Osa, T. Yoshizaki, H. Yamakawa, Polym. J. 36, 643 (2004)

    Article  CAS  Google Scholar 

  72. C.E.H. Bawn, R.F.J. Freeman, A.R. Kamalidin, Trans. Faraday Soc. 46, 862 (1950)

    Article  CAS  Google Scholar 

  73. T. Norisuye, H. Fujita, ChemTracts—Macromol. Chem. 2, 293 (1991)

    CAS  Google Scholar 

  74. H. Vink, Eur. Polym. J. 10, 149 (1974)

    Article  CAS  Google Scholar 

  75. B.L. Hager, G.C. Berry, H.-H. Tsai, J. Polym. Sci. B: Polym. Phys. 25, 387 (1987)

    Article  CAS  Google Scholar 

  76. S.-J. Chen, G.C. Berry, Polymer 31, 793 (1990)

    Article  CAS  Google Scholar 

  77. G. Tanaka, K. \(\check{\mathrm{S}}\) olc, Macromolecules 15, 791 (1982)

    Google Scholar 

  78. H. Yamakawa, Macromolecules 26, 5061 (1993)

    Article  CAS  Google Scholar 

  79. H. Yamakawa, F. Abe, Y. Einaga, Macromolecules 27, 5704 (1994)

    Article  CAS  Google Scholar 

  80. M. Yamada, T. Yoshizaki, H. Yamakawa, Macromolecules 31, 7728 (1998)

    Article  CAS  Google Scholar 

  81. T. Kawaguchi, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 37, 2240 (2004)

    Article  CAS  Google Scholar 

  82. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules 28, 694 (1995)

    Article  CAS  Google Scholar 

  83. Z. Tong, S. Ohashi, Y. Einaga, H. Fujita, Polym. J. 15, 835 (1983)

    Article  CAS  Google Scholar 

  84. C. Williams, F. Brochard, H.L. Frisch, Ann. Rev. Phys. Chem. 32, 433 (1981)

    Article  CAS  Google Scholar 

  85. I.H. Park, Q.-W. Wang, B. Chu, Macromolecules 20, 1965 (1987)

    Article  CAS  Google Scholar 

  86. B. Chu, I.H. Park, Q.-W. Wang, C. Wu, Macromolecules 20, 2833 (1987)

    Article  CAS  Google Scholar 

  87. I.H. Park, L.J. Fetters, B. Chu, Macromolecules 21, 1178 (1988)

    Article  CAS  Google Scholar 

  88. O.B. Ptitsyn, A.K. Kron, Y.Y. Eizner, J. Polym. Sci. C 16, 3509 (1968)

    Article  Google Scholar 

  89. T.A. Orofino, P.J. Flory, J. Chem. Phys. 26, 1067 (1957)

    Article  Google Scholar 

  90. P.-G. de Gennes, J. Phys. Lett. 36, L55 (1975)

    Article  Google Scholar 

  91. I.C. Sanchez, Macromolecules 12, 980 (1979)

    Article  CAS  Google Scholar 

  92. F. Tanaka, J. Chem. Phys. 82, 4707 (1985)

    Article  CAS  Google Scholar 

  93. K. Akasaka, Y. Nakamura, T. Norisuye, A. Teramoto, Polym. J. 26, 363 (1994)

    Article  CAS  Google Scholar 

  94. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, Zh. Eksp. Teor. Fiz. 67, 1875 (1974) [Soviet Phys. JETP 40, 932 (1975)]

    Google Scholar 

  95. M.D. Frank-Kamenetskii, A.V. Lukashin, A.V. Vologodskii, Nature 258, 398 (1975)

    Article  CAS  Google Scholar 

  96. J. des Cloizeaux, J. Phys. Lett. 42, L-433 (1981)

    Google Scholar 

  97. N.T. Moore, R.C. Lua, A.Y. Grosberg, Proc. Natl. Acad. Sci. U. S. A. 101, 13431 (2004)

    Article  CAS  Google Scholar 

  98. W.G. McMillan, J.E. Mayer, J. Chem. Phys. 13, 276 (1945)

    Article  CAS  Google Scholar 

  99. D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, 1976)

    Google Scholar 

  100. D. Ida, D. Nakatomi, T. Yoshizaki, Polym. J. 42, 735 (2010)

    Article  CAS  Google Scholar 

  101. A. Takano, Y. Kushida, Y. Ohta, K. Matsuoka, Y. Matsushita, Polymer 50, 1300 (2009)

    Article  CAS  Google Scholar 

  102. K. Terao, K. Shigeuchi, K. Oyamada, S. Kitamura, T. Sato, Macromolecules 46, 5355 (2013)

    Article  CAS  Google Scholar 

  103. D.A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)

    Google Scholar 

  104. M. Osa, H. Kanda, T. Yoshizaki, H. Yamakawa, Polym. J. 39, 423 (2007)

    Article  CAS  Google Scholar 

  105. J.W. Mays, N. Hadjichristidis, L.J. Fetters, Macromolecules 18, 2231 (1985)

    Article  CAS  Google Scholar 

  106. J.M. Mays, N. Hadjichristidis, W.W. Graessley, L.J. Fetters, J. Polym. Sci. B: Polym. Phys. 24, 2553 (1986)

    Article  CAS  Google Scholar 

  107. W. Burchard, Makromol. Chem. 50, 20 (1960)

    Article  Google Scholar 

  108. W.H. Stockmayer, M. Fixman, J. Polym. Sci. C 1, 137 (1963)

    Article  Google Scholar 

  109. J. Marchal, H. Benoit, J. Chim. Phys. 52, 818 (1955); J. Polym. Sci. 23, 223 (1957)

    Google Scholar 

  110. K. Nagai, T. Ishikawa, Polym. J. 2, 416 (1971)

    Article  CAS  Google Scholar 

  111. M. Doi, Polym. J. 3, 252 (1972)

    Article  Google Scholar 

  112. W.L. Mattice, D.K. Carpenter, Macromolecules 17, 625 (1984)

    Article  CAS  Google Scholar 

  113. M.L. Mansfield, Macromolecules 19, 1427 (1986)

    Article  CAS  Google Scholar 

  114. T. Yoshizaki, H. Yamakawa, J. Chem. Phys. 98, 4207 (1993)

    Article  CAS  Google Scholar 

  115. Y. Einaga, F. Abe, H. Yamakawa, J. Phys. Chem. 96, 3948 (1992)

    Article  CAS  Google Scholar 

  116. D.N. Rubingh, H. Yu, Macromolecules 9, 681 (1976)

    Article  CAS  Google Scholar 

  117. J.G. Kirkwood, R.J. Goldberg, J. Chem. Phys. 18, 54 (1950)

    Article  CAS  Google Scholar 

  118. W.H. Stockmayer, J. Chem. Phys. 18, 58 (1950)

    Article  CAS  Google Scholar 

  119. M. Fixman, J. Chem. Phys. 23, 2074 (1955)

    Article  CAS  Google Scholar 

  120. R.K. Bullough, Philos. Trans. R. Soc. A254, 397 (1962); Proc. R. Soc. A275, 271 (1963)

    Google Scholar 

  121. E.F. Casassa, H. Eisenberg, Adv. Protein Chem. 19, 287 (1964)

    Article  CAS  Google Scholar 

  122. H.A. Lorentz, Wiedem. Ann. 9, 641 (1880); L. Lorenz, Wiedem. Ann. 11, 70 (1881)

    Google Scholar 

  123. G.C. Berry, J. Chem. Phys. 44, 4550 (1966)

    Article  CAS  Google Scholar 

  124. B.H. Zimm, J. Chem. Phys. 16, 1093 (1948)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Mean-Square Electric Dipole Moment

Experimentally, Marchal and Benoit [109] first showed that there is no excluded-volume effect on the mean-square electric dipole moment \(\langle \mu ^{2}\rangle\) for the chain having type-B (perpendicular) dipoles like polyoxyethyleneglycol and diethoxy polyethyleneglycol. On the theoretical side, Nagai and Ishikawa [110] and subsequently Doi [111] supported this conclusion on the basis of the Gaussian chain, that is, α μ  = 1 if \(\langle \mathbf{R} \cdot \boldsymbol{\mu }\rangle _{0} = 0\) with R the end-to-end vector distance and \(\boldsymbol{\mu }\) the instantaneous (total) electric dipole moment vector. However, Mattice and Carpenter [112] have reported a Monte Carlo result in contradiction to the above conclusion on the basis of the RIS model; that is, α μ is not equal to unity for the type-B chain of finite length, and moreover, it does not become unity even in the limit of \(L \rightarrow \infty\). Mansfield [113] has then clarified that their result is due to the non-Gaussian nature of the chain, although not completely molecular-theoretically.

Thus, in this appendix we evaluate α μ  2 (only its first-order perturbation coefficient) on the basis of the HW chain [114]. All lengths are measured in units of \(\lambda ^{-1}\) as usual, and the same notation as that in Sect. 5.4.1 is used. By the use of Eq. (5.155), \(\langle \mu ^{2}\rangle\) may be written in the form

$$\displaystyle{ \langle \mu ^{2}\rangle =\int _{ 0}^{L}\int _{ 0}^{L}{\bigl \langle\tilde{\mathbf{m}}(t_{ 1}) \cdot \tilde{\mathbf{m}}(t_{2})\bigr \rangle}dt_{1}dt_{2}\,. }$$
(8.185)

Corresponding to Eq. (8.4) with Eqs. (8.9) and (8.10) for α R  2, the first-order perturbation theory of α μ  2 may then be given by

$$\displaystyle{ \alpha _{\mu }^{\ 2} = 1 + K_{\mu }(L)\,z + \cdots }$$
(8.186)

with

$$\displaystyle{ K_{\mu }(L) = \frac{F_{\mu }(L)} {L^{1/2}\langle \mu ^{2}\rangle _{0}}\,, }$$
(8.187)

where

$$\displaystyle\begin{array}{rcl} F_{\mu }(L)& =& {\biggl (\frac{2\pi c_{\infty }} {3} \biggr )}^{3/2}\int _{ 0}^{L}ds_{ 1}\int _{s_{1}}^{L}ds_{ 2}\biggl \{G(\mathbf{0};s)\langle \mu ^{2}\rangle _{ 0} \\ & & -\int _{0}^{L}dt_{ 1}\int _{0}^{L}dt_{ 2}\int \bigl [\tilde{\mathbf{m}}(t_{1}) \cdot \tilde{\mathbf{m}}(t_{2})\bigl ]P_{0}(\Omega _{1},\Omega _{2},\mathbf{0}_{s_{1}s_{2}};L)d\Omega _{1}d\Omega _{2}\biggr \} \\ & & {}\end{array}$$
(8.188)

with \(\Omega _{i} = \Omega (t_{i})\) (i = 1, 2).

The asymptotic solution in the limit of \(L \rightarrow \infty\) is then found analytically to be

$$\displaystyle{ \langle \mu ^{2}\rangle _{ 0} ={\biggl [ \frac{4m^{2} + (\kappa _{0}m_{\eta } +\tau _{0}m_{\zeta })^{2}} {4 +\kappa _{ 0}^{\ 2} +\tau _{ 0}^{\ 2}} \biggr ]}L + \mathcal{O}(L^{0})\,, }$$
(8.189)
$$\displaystyle\begin{array}{rcl} K_{\mu }(L) = \frac{4} {3}{\biggl [ \frac{4 +\tau _{ 0}^{\ 2}} {4m^{2} + (\kappa _{0}m_{\eta } +\tau _{0}m_{\zeta })^{2}}\biggr ]}{\biggl ( \frac{\kappa _{0}\tau _{0}m_{\eta }} {4 + \tau _{0}^{2}} + m_{\zeta }\biggr )}^{2} + \mathcal{O}(L^{-1/2})\,.& & \\ & &{}\end{array}$$
(8.190)

For the HW chain having type-A (parallel) dipoles (\(m_{\xi } = m_{\eta } = 0\)), in the coil limit K μ (L) is equal to 4/3, and therefore α μ  = α R , as seen from Eq. (8.190). For the HW chain having type-B dipoles (m ζ  = 0), Eq. (8.190) reduces to

$$\displaystyle{ \qquad K_{\mu }(L) = \frac{4\kappa _{0}^{\ 2}\tau _{0}^{\ 2}m_{\eta }^{\ 2}} {3(4m^{2} +\kappa _{ 0}^{\ 2}m_{\eta }^{\ 2})(4 +\tau _{ 0}^{\ 2})} + \mathcal{O}(L^{-1/2})\qquad (\mathrm{B})\,. }$$
(8.191)

It is seen from Eq. (8.191) that K μ ≠ 0 if m η ≠ 0 and κ 0 τ 0 ≠ 0, so that α μ then becomes infinitely large in the limit of \(L \rightarrow \infty\). Such dependence of α μ on L has not been pointed out by Mattice and Carpenter [112] and by Mansfield [113]. Further, this does not conflict with the above-mentioned result [110, 111] for the Gaussian chain since the HW chain does not necessarily satisfy the condition \(\langle \mathbf{R} \cdot \boldsymbol{\mu }\rangle _{0} = 0\) even in the case of perpendicular dipoles [114]. It must also be noted that α μ may possibly become a constant different from unity because of the term of order \(L^{-1/2}\) in K μ (L) if κ 0 τ 0 ≠ 0 for the type-B chain. This corresponds to the case pointed out by Mattice and Carpenter and by Mansfield.

Appendix 2: Determination of the Virial Coefficients for Oligomers

For an accurate experimental determination of the (osmotic) second and third virial coefficients A 2 and A 3 for oligomers, light scattering measurements are preferable. Then, however, measurements must be carried out generally for optically anisotropic and rather concentrated solutions, and necessarily several problems are encountered. In this appendix we resolve them and present a procedure suitable for the present purpose [115].

We consider a binary solution which in general is optically anisotropic and not necessarily dilute. Let R Uv be the reduced intensity of unpolarized scattered light for vertically polarized incident light, and let \(R_{\theta }^{{\ast}}\) be the Rayleigh ratio, where the asterisk indicates the scattering from anisotropic scatterers, it being dropped for the isotropic scattering. The (isotropic) Rayleigh ratio \(R_{\theta =0}\) at vanishing scattering angle Θ, which is the first desired quantity, is obtained from

$$\displaystyle{ R_{\theta =0} ={\bigl ( 1 -\tfrac{7} {6}\rho _{\mathrm{u}}\bigr )}R_{\mathrm{Uv}}^{{\ast}}\,, }$$
(8.192)

or

$$\displaystyle{ R_{\theta =0} = (1 +\rho _{\mathrm{u}})^{-1}{\bigl (1 -\tfrac{7} {6}\rho _{\mathrm{u}}\bigr )}R_{\theta =\pi /2}^{{\ast}} }$$
(8.193)

with the observed R Uv or \(R_{\theta =\pi /2}^{{\ast}}\), where ρ u is the depolarization ratio as defined as the ratio I HuI Vu of the horizontal to vertical component of the scattered intensity at \(\theta =\pi /2\) for unpolarized incident light. ρ u may be determined from [116]

$$\displaystyle{ (1 +\cos ^{2}\theta ) \frac{R_{\theta }^{{\ast}}} {R_{\theta =\pi /2}^{{\ast}}} = 1 +{\biggl ( \frac{1 -\rho _{\mathrm{u}}} {1 +\rho _{\mathrm{u}}}\biggr )}\cos ^{2}\theta }$$
(8.194)

with the observed \(R_{\theta }^{{\ast}}\). Note that these equations can readily be derived from the basic equations for I fi in Sect. 5.3.2

Now, according to the fluctuation theory [1, 117, 118], \(R_{\theta =0}\) may be written in the form

$$\displaystyle{ R_{\theta =0} = R_{\mathrm{d}} +\varDelta R_{\theta =0} }$$
(8.195)

with R d and \(\varDelta R_{\theta =0}\) being the density scattering (the Einstein–Smoluchowski term) and the composition scattering, respectively, and given by

$$\displaystyle{ R_{\mathrm{d}} = \frac{2\pi ^{2}\tilde{n}^{2}k_{\mathrm{B}}T} {\lambda _{0}^{\ 4}\kappa _{T}} {\biggl (\frac{\partial \tilde{n}} {\partial p}\biggr )}_{T,m}^{2}\,, }$$
(8.196)
$$\displaystyle{ \qquad \qquad \varDelta R_{\theta =0} = -\frac{2\pi ^{2}\tilde{n}^{2}k_{\mathrm{B}}TV _{0}c} {\lambda _{0}^{\ 4}} {\biggl (\frac{\partial \tilde{n}} {\partial c} \biggr )}_{T,p}^{2}\bigg/{\biggl (\frac{\partial \mu _{0}} {\partial c}\biggr )}_{T,p}\,, }$$
(8.197)

where \(\lambda _{0}\) is the wavelength of the incident light in vacuum, κ T the isothermal compressibility of the solution, \(\tilde{n}\) the refractive index of the solution, p the pressure, m the ratio of the solute to solvent mass, V 0 the partial molecular volume of the solvent, c the mass concentration of the solution, and μ 0 the chemical potential of the solvent. We note that the molecular-theoretical basis of the term R d has been given correctly by Fixman [119], and that the multiple scattering theory developed by Bullough [120] is in error [115].

We first rewrite Eq. (8.197). Under the osmotic condition, the chemical potential μ 0 0(T, p) of the pure solvent is equated to μ 0(T, p +Π, c) with Π the osmotic pressure, so that we have

$$\displaystyle\begin{array}{rcl} \mu _{0}^{0}(T,p)& =& \mu _{ 0}(T,p,c) +{\biggl ( \frac{\partial \mu _{0}} {\partial p}\biggr )}_{T,c}\varPi \\ & & +\frac{1} {2}{\biggl (\frac{\partial ^{2}\mu _{0}} {\partial p^{2}}\biggr )}_{T,c}\varPi ^{2} + \frac{1} {3}{\biggl (\frac{\partial ^{3}\mu _{0}} {\partial p^{3}}\biggr )}_{T,c}\varPi ^{3} + \cdots \,.{}\end{array}$$
(8.198)

Differentiation of both sides of Eq. (8.198) with respect to c at constant T and p leads to

$$\displaystyle\begin{array}{rcl} {\biggl (\frac{\partial \mu _{0}} {\partial c}\biggr )}_{T,p}& =& -V _{0}{\biggl ( \frac{\partial \varPi } {\partial c}\biggr )}_{T,p} -\varPi {\biggl (\frac{\partial V _{0}} {\partial c} \biggr )}_{T,p} \\ & & -\frac{1} {2}\varPi ^{2}{\biggl (\frac{\partial ^{2}V _{ 0}} {\partial p\partial c} \biggr )}_{T} -\varPi {\biggl (\frac{\partial V _{0}} {\partial p} \biggr )}_{T,c}{\biggl ( \frac{\partial \varPi } {\partial c}\biggr )}_{T,p} \\ & & -\frac{1} {3}\varPi ^{3}{\biggl ( \frac{\partial ^{3}V _{ 0}} {\partial p^{2}\partial c}\biggr )}_{T} -\varPi ^{2}{\biggl (\frac{\partial ^{2}V _{ 0}} {\partial p^{2}} \biggr )}_{T,c}{\biggl ( \frac{\partial \varPi } {\partial c}\biggr )}_{T,p} + \cdots \,,{}\end{array}$$
(8.199)

where we have used the relation \((\partial \mu _{0}/\partial p)_{T,c} = V _{0}\). In general, Π and V 0 may be expanded in powers of c as follows,

$$\displaystyle{ \frac{\varPi } {RT} = \frac{1} {M}c + A_{2}c^{2} + A_{ 3}c^{3} + \cdots \,, }$$
(8.200)
$$\displaystyle{ V _{0} = V _{0}^{0}{\biggl [1 -\frac{1} {2}{\biggl (\frac{\partial v_{1}} {\partial c} \biggr )}_{T,p,0}c^{2} + \cdots \,\biggr ]}\,, }$$
(8.201)

where R is the gas constant, V 0 0 the molecular volume of the pure solvent, v 1 the partial specific volume of the solute, and the subscript 0 on the derivative indicates its value at c = 0.

Substitution of Eq. (8.199) with Eqs. (8.200) and (8.201) into Eq. (8.197) leads to

$$\displaystyle{ \frac{Kc} {\varDelta R_{\theta =0}} = \frac{1} {M} + 2A_{2}^{{\prime}}c + 3A_{ 3}^{{\prime}}c^{2} + \cdots }$$
(8.202)

with

$$\displaystyle{ K = \frac{2\pi ^{2}\tilde{n}^{2}} {N_{\mathrm{A}}\lambda _{0}^{\ 4}}{\biggl (\frac{\partial \tilde{n}} {\partial c} \biggr )}_{T,p}^{2}\,, }$$
(8.203)
$$\displaystyle{ A_{2} = A_{2}^{{\prime}} + \frac{RT\kappa _{T,0}} {2M^{2}} \,, }$$
(8.204)
$$\displaystyle\begin{array}{rcl} A_{3}& =& A_{3}^{{\prime}} + \frac{1} {3M}{\biggl (\frac{\partial v_{1}} {\partial c} \biggr )}_{T,p,0} + \frac{RT\kappa _{T,0}A_{2}} {M} + \frac{RT} {2M^{2}}{\biggl (\frac{\partial \kappa _{T}} {\partial c} \biggr )}_{T,0} \\ & & +\frac{(RT)^{2}} {3M^{3}} {\biggl [\kappa _{T,0}^{2} -{\biggl (\frac{\partial \kappa _{T}} {\partial p}\biggr )}_{T,0}\biggr ]}\,, {}\end{array}$$
(8.205)

where κ T, 0 is the isothermal compressibility of the pure solvent. Thus the desired virial coefficients A 2 and A 3 may be obtained from Eqs. (8.204) and (8.205) with the observed light-scattering virial coefficients \(A_{2}^{{\prime}}\) and \(A_{3}^{{\prime}}\), which are different from the former except for large M. We note that Eq. (8.204) is equivalent to a relation derived by Casassa and Eisenberg [121].

Next we consider the problem of determining R d at finite concentrations, although indirectly. For this purpose, we adopt the Lorentz–Lorenz relation between \(\tilde{n}\) and the solution density ρ w [122],

$$\displaystyle{ \frac{\tilde{n}^{2} - 1} {\tilde{n}^{2} + 1} = \mathrm{const.}\,\rho _{\mathrm{w}}\,, }$$
(8.206)

where we assume that the proportionality constant is independent of p. Equation (8.206) has been shown to be the best of such relations [115]. Differentiation of both sides of Eq. (8.206) with respect to p leads to

$$\displaystyle{ \kappa _{T}^{-1}{\biggl (\frac{\partial \tilde{n}} {\partial p}\biggr )}_{T,m} = \frac{(\tilde{n}^{2} - 1)(\tilde{n}^{2} + 2)} {6\tilde{n}} \,. }$$
(8.207)

Substituting Eq. (8.207) into Eq. (8.196), we obtain

$$\displaystyle{ R_{\mathrm{d}} = \frac{\kappa _{T}(\tilde{n}^{2} - 1)^{2}(\tilde{n}^{2} + 2)^{2}} {\kappa _{T,0}(\tilde{n}_{0}^{\ 2} - 1)^{2}(\tilde{n}_{0}^{\ 2} + 2)^{2}}R_{\mathrm{d,0}}\,, }$$
(8.208)

where \(\tilde{n}_{0}\) and R d,0 are the values of \(\tilde{n}\) and R d for the pure solvent, respectively.

Thus we may calculate R d from Eq. (8.208) with the observed R d,0, and then determine \(\varDelta R_{\theta =0}\) from Eq. (8.195) with this R d and the observed \(R_{\theta =0}\). Finally, we may determine M, A 2, and A 3 from Eq. (8.202) with Eqs. (8.203)–(8.205) by the use of the Berry square-root plot [123] or the Zimm plot [124] and also the Bawn plot [72, 73]. For the evaluation of the optical constant K given by Eq. (8.203), note that we must use values of \(\tilde{n}\) and \((\partial \tilde{n}/\partial c)_{T,p}\) at finite concentrations c. For example, the results obtained for toluene (solute) in cyclohexane (solvent) at 25.0 C are M = 93 ± 4 and \(A_{2} = 1.5 \times 10^{-3}\) cm3 mol/g2 (with \(RT\kappa _{T,0}/2M^{2} = 1.65 \times 10^{-4}\) cm3 mol/g2) [115]. (Note that the true M of toluene is 92.)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamakawa, H., Yoshizaki, T. (2016). Excluded-Volume Effects. In: Helical Wormlike Chains in Polymer Solutions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48716-7_8

Download citation

Publish with us

Policies and ethics