Skip to main content

Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications

  • Chapter
  • First Online:
Advances in Nanotheranostics I

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 6))

Abstract

Dendrimers possess unique three-dimensional architectures, highly branched macromolecular characteristics, and abundant terminal functional groups. These properties of dendrimers afford their uses as a versatile nanoplatform to design multifunctional nanodevices for various biomedical applications, especially for magnetic resonance (MR) imaging of different biological systems. The periphery of dendrimers can be linked with targeting ligands and imaging agents, while the unique dendrimer interior and surface functionality render their uses to form dendrimer-entrapped metal nanoparticles (NPs) or dendrimer-assembled magnetic iron oxide NPs. The formed dendrimer-based contrast agents can be used for various MR imaging applications, including T1-weighted MR, T2-weighted MR, MR/computed tomography, MR/fluorescence imaging of blood pool, animal organs, and tumors. In particular, this chapter mainly introduces some recent advances of dendrimer-based contrast agents for MR imaging of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helms B, Meijer E (2006) Dendrimers at work. Science 313(5789):929–930

    Article  Google Scholar 

  2. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132

    Article  Google Scholar 

  3. Tomalia DA (2004) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 37(2):39–57

    Google Scholar 

  4. Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40(5):2673–2703

    Article  Google Scholar 

  5. Esfand R, Tomalia DA (2001) Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  Google Scholar 

  6. Kannaiyan D, Imae T (2009) pH-dependent encapsulation of pyrene in PPI-core: PAMAM-shell dendrimers. Langmuir 25(9):5282–5285

    Article  Google Scholar 

  7. Karatasos K, Adolf D, Davies G (2001) Statics and dynamics of model dendrimers as studied by molecular dynamics simulations. J Chem Phys 115(11):5310–5318

    Article  Google Scholar 

  8. Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64(6):571–588

    Article  Google Scholar 

  9. Zhang WL, Li N, Huang J, Yu JH, Wang DX, Li YP, Liu SY (2010) Gadolinium‐conjugated FA‐PEG‐PAMAM‐COOH nanoparticles as potential tumor‐targeted circulation‐prolonged macromolecular MRI contrast agents. J Appl Polym Sci 118(3):1805–1814

    Google Scholar 

  10. Wen S, Liu H, Cai H, Shen M, Shi X (2013) Targeted and pH‐responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer‐modified multi‐walled carbon nanotubes. Adv Healthcare Mater 2(9):1267–1276

    Article  Google Scholar 

  11. Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, Baker JR (2007) Dendrimer‐entrapped gold nanoparticles as a platform for cancer‐cell targeting and imaging. Small 3(7):1245–1252

    Article  Google Scholar 

  12. Longmire MR, Ogawa M, Choyke PL, Kobayashi H (2014) Dendrimers as high relaxivity MR contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):155–162

    Article  Google Scholar 

  13. Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym 44:1–27

    Google Scholar 

  14. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  15. Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72(8):750–759

    Article  Google Scholar 

  16. Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, Ansorge O, Khrapitchev A, Bristow C, Balathasan L (2012) Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci 109(17):6674–6679

    Article  Google Scholar 

  17. Langereis S, Dirksen A, Hackeng TM, van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31(7):1152–1160

    Article  Google Scholar 

  18. Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedicalapplications. ACS Appl Mater Interfaces 5(5):1722–1731

    Article  Google Scholar 

  19. Alexiou C, Jurgons R, Seliger C, Iro H (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9–10):2762–2768

    Article  Google Scholar 

  20. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  Google Scholar 

  21. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10

    Article  Google Scholar 

  22. Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    Article  Google Scholar 

  23. Mahajan S, Koul V, Choudhary V, Shishodia G, Bharti AC (2013) Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 24(1):015603

    Article  Google Scholar 

  24. Hardie AD, Naik M, Hecht EM, Chandarana H, Mannelli L, Babb JS, Taouli B (2010) Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol 20(6):1431–1441

    Article  Google Scholar 

  25. Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34(5):1570–1580

    Article  Google Scholar 

  26. Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S (2010) Silica‐coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20(11):1733–1741

    Article  Google Scholar 

  27. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem 119(28):5493–5497

    Article  Google Scholar 

  28. Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly (amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720

    Article  Google Scholar 

  29. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31(13):3667–3673

    Article  Google Scholar 

  30. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Article  Google Scholar 

  31. Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10591–10607

    Article  Google Scholar 

  32. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR Jr, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113(31):13593–13599

    Article  Google Scholar 

  33. Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35(11):3666–3677

    Article  Google Scholar 

  34. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392

    Article  Google Scholar 

  35. Wiener E, Brechbiel M, Brothers H, Magin R, Gansow O, Tomalia D, Lauterbur P (1994) Dendrimer‐based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8

    Article  Google Scholar 

  36. Kobayashi H, Jo SK, Kawamoto S, Yasuda H, Hu X, Knopp MV, Brechbiel MW, Choyke PL, Star RA (2004) Polyamine dendrimer‐based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Reson Imaging 20(3):512–518

    Article  Google Scholar 

  37. Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chem 14(2):388–394

    Article  Google Scholar 

  38. Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57(15):2271–2286

    Article  Google Scholar 

  39. Kobayashi H, Saga T, Kawamoto S, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)64. Cancer Res 61(13):4966–4970

    Google Scholar 

  40. Kobayashi H, Kawamoto S, Choyke PL, Sato N, Knopp MV, Star RA, Waldmann TA, Tagaya Y, Brechbiel MW (2003) Comparison of dendrimer‐based macromolecular contrast agents for dynamic micro‐magnetic resonance lymphangiography. Magn Reson Med 50(4):758–766

    Article  Google Scholar 

  41. Longmire M, Choyke PL, Kobayashi H (2008) Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 8(14):1180–1186

    Article  Google Scholar 

  42. Sena LM, Fishman SJ, Jenkins KJ, Xu H, Brechbiel MW, Regino CA, Kosaka N, Bernardo M, Choyke PL, Kobayashi H (2010) Magnetic resonance lymphangiography with a nano-sized gadolinium-labeled dendrimer in small and large animal models. Nanomedicine 5(8):1183–1191

    Article  Google Scholar 

  43. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Positive effects of polyethylene glycol conjugation to generation‐4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 46(4):781–788

    Article  Google Scholar 

  44. He X-H, Shaw P-C, Tam S-C (1999) Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci 65(4):355–368

    Article  Google Scholar 

  45. Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, Christian Sontum P (1997) Gadolinium (III) DO3A macrocycles and polyethylene glycol coupled to dendrimers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloys Compd 249(1):185–190

    Article  Google Scholar 

  46. Kono K, Kojima C, Hayashi N, Nishisaka E, Kiura K, Watarai S, Harada A (2008) Preparation and cytotoxic activity of poly (ethylene glycol)-modified poly (amidoamine) dendrimers bearing adriamycin. Biomaterials 29(11):1664–1675

    Article  Google Scholar 

  47. Haba Y, Harada A, Takagishi T, Kono K (2005) Synthesis of biocompatible dendrimers with a peripheral network formed by linking of polymerizable groups. Polymer 46(6):1813–1820

    Article  Google Scholar 

  48. Kojima C, Turkbey B, Ogawa M, Bernardo M, Regino CA, Bryant LH Jr, Choyke PL, Kono K, Kobayashi H (2011) Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomed-Nanotechnol Biol Med 7(6):1001–1008

    Article  Google Scholar 

  49. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242(3):647–649

    Article  Google Scholar 

  50. Lu Z-R, Mohs AM, Zong Y, Feng Y (2006) Polydisulfide Gd (III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. Int J Nanomed 1(1):31–40

    Article  Google Scholar 

  51. Lu ZR, Wu X (2010) Polydisulfide‐based biodegradable macromolecular magnetic resonance imaging contrast agents. Isr J Chem 50(2):220–232

    Article  Google Scholar 

  52. Huang C-H, Nwe K, Al Zaki A, Brechbiel MW, Tsourkas A (2012) Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 6(11):9416–9424

    Article  Google Scholar 

  53. Luo K, Liu G, She W, Wang Q, Wang G, He B, Ai H, Gong Q, Song B, Gu Z (2011) Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32(31):7951–7960

    Article  Google Scholar 

  54. Lim J, Turkbey B, Bernardo M, Bryant LH Jr, Garzoni M, Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H (2012) Gadolinium MRI contrast agents based on triazine dendrimers: relaxivity and in vivo pharmacokinetics. Bioconjugate Chem 23(11):2291–2299

    Article  Google Scholar 

  55. Lim J, Guo Y, Rostollan CL, Stanfield J, Hsieh J-T, Sun X, Simanek EE (2008) The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol Pharmaceut 5(4):540–547

    Article  Google Scholar 

  56. Langereis S, De Lussanet QG, Van Genderen MH, Backes WH, Meijer E (2004) Multivalent contrast agents based on gadolinium-diethylenetriaminepentaacetic acid-terminated poly (propylene imine) dendrimers for magnetic resonance imaging. Macromolecules 37(9):3084–3091

    Article  Google Scholar 

  57. Langereis S, de Lussanet QG, van Genderen MH, Meijer E, Beets‐Tan RG, Griffioen AW, van Engelshoven J, Backes WH (2006) Evaluation of Gd (III) DTPA‐terminated poly (propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141

    Article  Google Scholar 

  58. de Lussanet QG, Langereis S, Beets-Tan RG, van Genderen MH, Griffioen AW, van Engelshoven JM, Backes WH (2005) Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. Radiology 235(1):65–72

    Article  Google Scholar 

  59. Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90(3):518–524

    Article  MathSciNet  Google Scholar 

  60. Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, Togashi K, Konishi J, Brechbiel MW (2000) Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 27(9):1334–1339

    Article  Google Scholar 

  61. Xu H, Regino CA, Koyama Y, Hama Y, Gunn AJ, Bernardo M, Kobayashi H, Choyke PL, Brechbiel MW (2007) Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjugate Chem 18(5):1474–1482

    Article  Google Scholar 

  62. Han L, Li J, Huang S, Huang R, Liu S, Hu X, Yi P, Shan D, Wang X, Lei H (2011) Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials 32(11):2989–2998

    Article  Google Scholar 

  63. Tan M, Wu X, Jeong E-K, Chen Q, Lu Z-R (2010) Peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules 11(3):754–761

    Article  Google Scholar 

  64. Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed 3(2):201–210

    Article  Google Scholar 

  65. Wolfenden ML, Cloninger MJ (2005) Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J Am Chem Soc 127(35):12168–12169

    Article  Google Scholar 

  66. van Baal I, Malda H, Synowsky SA, van Dongen JL, Hackeng TM, Merkx M, Meijer E (2005) Multivalent peptide and protein dendrimers using native chemical ligation. Angew Chem Int Ed 44(32):5052–5057

    Article  Google Scholar 

  67. Choi Y, Mecke A, Orr BG, Banaszak Holl MM, Baker JR (2004) DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters. Nano Lett 4(3):391–397

    Article  Google Scholar 

  68. Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    Google Scholar 

  69. Chen W-T, Thirumalai D, Shih TT-F, Chen R-C, Tu S-Y, Lin C-I, Yang P-C (2010) Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 12(2):145–154

    Article  Google Scholar 

  70. Kobayashi H, Kawamoto S, Saga T, Sato N, Ishimori T, Konishi J, Ono K, Togashi K, Brechbiel MW (2001) Avidin-dendrimer-(1B4M-Gd) 254: a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem 12(4):587–593

    Article  Google Scholar 

  71. Park J, Lee JJ, Jung JC, Yu DY, Oh C, Ha S, Kim TJ, Chang Y (2008) Gd‐DOTA conjugate of RGD as a potential tumor‐targeting MRI contrast agent. ChemBioChem 9(17):2811–2813

    Article  Google Scholar 

  72. Lee JH, Silva AC, Merkle H, Koretsky AP (2005) Manganese‐enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose‐dependent and temporal evolution of T1 contrast. Magn Reson Med 53(3):640–648

    Article  Google Scholar 

  73. Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324

    Article  Google Scholar 

  74. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc 136(32):11220–11223

    Article  Google Scholar 

  75. Hu H, Dai A, Sun J, Li X, Gao F, Wu L, Fang Y, Yang H, An L, Wu H (2013) Aptamer-conjugated Mn3O4@ SiO2 core-shell nanoprobes for targeted magnetic resonance imaging. Nanoscale 5(21):10447–10454

    Article  Google Scholar 

  76. Pan D, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 67(44):8431–8444

    Article  Google Scholar 

  77. Ye Z, Jeong EK, Wu X, Tan M, Yin S, Lu ZR (2012) Polydisulfide manganese (II) complexes as non‐gadolinium biodegradable macromolecular MRI contrast agents. J Magn Reson Imaging 35(3):737–744

    Article  Google Scholar 

  78. Bertin A, Steibel J, Michou-Gallani A-I, Gallani J-L, Felder-Flesch D (2009) Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjugate Chem 20(4):760–767

    Article  Google Scholar 

  79. Nguyen TH, Bryant H, Shapsa A, Street H, Mani V, Fayad ZA, Frank JA, Tsimikas S, Briley-Saebo KC (2015) Manganese G8 dendrimers targeted to oxidation-specific epitopes: In vivo MR imaging of atherosclerosis. J Magn Reson Imaging 41(3):797–805

    Google Scholar 

  80. Tan M, Wu X, Jeong E-K, Chen Q, Parker DL, Lu Z-R (2010) An effective targeted nanoglobular manganese (II) chelate conjugate for magnetic resonance molecular imaging of tumor extracellular matrix. Mol Pharmaceut 7(4):936–943

    Article  Google Scholar 

  81. Tan M, Ye Z, Jeong E-K, Wu X, Parker DL, Lu Z-R (2011) Synthesis and evaluation of nanoglobular macrocyclic Mn (II) chelate conjugates as non-gadolinium (III) MRI contrast agents. Bioconjugate Chem 22(5):931–937

    Article  Google Scholar 

  82. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13(6):2201–2209

    Article  Google Scholar 

  83. Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker JR Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20(9):1671–1678

    Article  Google Scholar 

  84. Wang SH, Shi X, Van Antwerp M, Cao Z, Swanson SD, Bi X, Baker JR Jr (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17(16):3043–3050

    Article  Google Scholar 

  85. Lee IH, Bulte JWM, Schweinhardt P, Douglas T, Trifunovski A, Hofstetter C, Olson L, Spenger C (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187(2):509–516

    Article  Google Scholar 

  86. Tunici P, Bulte JWM, Bruzzone MG, Poliani PL, Cajola L, Grisoli M, Douglas T, Finocchiaro G (2006) Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. J Gene Med 8(4):506–513

    Article  Google Scholar 

  87. Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E (2006) High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev 250(11–12):1562–1579

    Article  Google Scholar 

  88. Ferrauto G, Castelli DD, Di Gregorio E, Langereis S, Burdinski D, Grull H, Terreno E, Aime S (2014) Lanthanide-loaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J Am Chem Soc 136(2):638–641

    Article  Google Scholar 

  89. Klemm PJ, Floyd WC III, Andolina CM, Frechet JMJ, Raymond KN (2012) Conjugation to biocompatible dendrimers increases lanthanide T2 relaxivity of hydroxypyridinone complexes for magnetic resonance imaging. Eur J Inorg Chem 12:2108–2114

    Article  Google Scholar 

  90. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces 5(20):10357–10366

    Article  Google Scholar 

  91. Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, Zhao Y, Xu H, Yang X (2013) pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 34(30):7418–7428

    Article  Google Scholar 

  92. Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH, Lim SM, Park S, Song R (2013) RGD peptide-conjugated multimodal NaGdF4: Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54(1):96–103

    Article  Google Scholar 

  93. Kryza D, Taleb J, Janier M, Marmuse L, Miladi I, Bonazza P, Louis C, Perriat P, Roux S, Tillement O (2011) Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjugate Chem 22(6):1145–1152

    Article  Google Scholar 

  94. Liu H, Wang H, Guo R, Cao X, Zhao J, Luo Y, Shen M, Zhang G, Shi X (2010) Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym Chem 1(10):1677–1683

    Article  Google Scholar 

  95. Liu H, Xu Y, Wen S, Zhu J, Zheng L, Shen M, Zhao J, Zhang G, Shi X (2013) Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. Polym Chem 4(6):1788–1795

    Article  Google Scholar 

  96. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119

    Article  Google Scholar 

  97. Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34(21):5200–5209

    Article  Google Scholar 

  98. Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120

    Article  Google Scholar 

  99. Feng J, Chang D, Wang Z, Shen B, Yang J, Jiang Y, Ju S, He N (2014) A FITC-doped silica coated gold nanocomposite for both in vivo X-ray CT and fluorescence dual modal imaging. RSC Adv 4(94):51950–51959

    Article  Google Scholar 

  100. Karreman MA, Agronskaia AV, van Donselaar EG, Vocking K, Fereidouni F, Humbel BM, Verrips CT, Verkleij AJ, Gerritsen HC (2012) Optimizing immuno-labeling for correlative fluorescence and electron microscopy on a single specimen. J Struct Biol 180(2):382–386

    Article  Google Scholar 

  101. Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111

    Article  Google Scholar 

  102. Lingyu J, Qing Z, Ketao M, Hui X, Yanhong Z, Wenzhen Z, Yanbing Z, Huibi X, Xiangliang Y (2013) pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 34(30):7418–7428

    Article  Google Scholar 

  103. Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463

    Article  Google Scholar 

  104. Caminade A-M, Turrin C-O (2014) Dendrimers for drug delivery. J Mater Chem B 2(26):4055–4066

    Article  Google Scholar 

  105. Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl Mater Interfaces 6(18):16416–16425

    Article  Google Scholar 

  106. Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1(34):4199–4211

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (21273032), the Sino-German Center for Research Promotion (GZ899), the Ph.D. Programs Foundation of Ministry of Education of China (20130075110004), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of High Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingwu Shen or Xiangyang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, W., Li, J., Shen, M., Shi, X. (2016). Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications. In: Dai, Z. (eds) Advances in Nanotheranostics I. Springer Series in Biomaterials Science and Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48544-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48544-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48542-2

  • Online ISBN: 978-3-662-48544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics