Skip to main content

Separation of Stellar Spectra Based on Non-negativity and Parametric Modelling of Mixing Operator

  • Chapter
  • First Online:
Non-negative Matrix Factorization Techniques

Part of the book series: Signals and Communication Technology ((SCT))

  • 1753 Accesses

Abstract

In this chapter, we propose blind source separation methods to extract stellar spectra from hyperspectral images. The presented work particularly concerns astrophysical data cubes from the multi-unit spectroscopic explorer (MUSE) European project. These data cubes here consist of a spectrally and spatially transformed version of the light signals emitted by dense fields of stars, due to the influence of atmosphere and of the MUSE instrument, which is modelled by the so-called point spread function (PSF). The spectrum associated with each pixel of these data cubes can thus result from contributions of different star signals. We first derive the associated mixing model, taking into account the PSF properties. We then propose two separation methods based on the non-negativity of observed data, source spectra and mixing parameters. The first method is based on non-negative matrix factorization (NMF). The second one, which is the principal contribution in this chapter, uses the proposed parametric modelling of the mixing operator and performs alternate estimation steps for the star spectra and PSF parameters. Several versions of this method are proposed, in order to eventually combine good estimation accuracy and reduced computational load. Tests are performed with simulated but realistic data. The separation method based on parametric modelling gives very satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our work is part of the Dedicated Algorithms for HyperspectraL Imaging in Astronomy (DAHLIA) project, funded by the French ANR agency, which aims at developing such methods.

  2. 2.

    Hubble is a spatial telescope in orbit around the Earth since 1990. It is coupled with many spectrometers. This permits it to cover a spectral domain spreading from the infra-red to near ultra-violet wavelengths.

  3. 3.

    Integrating the LSF over the whole spectrum or just over the interval \([\lambda -K,\lambda +K]\) is the same because the LSF is equal to zero outside this interval.

  4. 4.

    We call (6.6) a “convolution” but note that it is a misnomer because, due to the spectral variability of the PSF, this integral does not correspond to the usual definition of a convolution.

  5. 5.

    A monomial (or generalised permutation) matrix is a matrix in each row and column of which there is exactly one non-zero element.

  6. 6.

    The experimental results provided in [36] should be disregarded, since it eventually turned out that the experiments reported in [36] yield an issue.

  7. 7.

    In real operation, the variance estimates will be provided by the data reduction software (DRS) of MUSE.

  8. 8.

    The FSF matrix to which we add the noise, and which is used for initialisation, is in fact an average matrix of the L true matrices of FSF corresponding to the considered spectral interval, since this FSF matrix is assumed to be constant in the interval by our LSQ-NMF method, but in reality it depends on the wavelength.

  9. 9.

    The removed spectral bands correspond to a very noisy zone, since it has been used for the calibration with a laser star.

  10. 10.

    We use: \( \dfrac{\partial (a^{-x})}{\partial x} = - a^{-x} \ln (a)\).

References

  1. P. Comon, C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications (Academic Press, Oxford, 2010)

    Google Scholar 

  2. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, Adaptive and Learning Systems for Signal Processing, Communications and Control (Wiley, New York, 2001)

    Book  Google Scholar 

  3. C. Jutten, J. Herault, Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)

    Article  MATH  Google Scholar 

  4. P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  5. A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  6. M. Babaie-Zadeh, C. Jutten, A general approach for mutual information minimization and its application to blind source separation. Signal Process. 85(5), 975–995 (2005)

    Article  MATH  Google Scholar 

  7. R. Gribonval, S. Lesage, A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges, in Proceedings of the ESANN (2006), pp. 323–330

    Google Scholar 

  8. F. Abrard, Y. Deville, A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  9. I. Meganem, Y. Deville, M. Puigt, Blind separation methods based on correlation for sparse possibly-correlated images, in Proceedings of IEEE International Conference ICASSP, Dallas, USA (2010)

    Google Scholar 

  10. O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52, 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  11. Y. Deville, M. Puigt, Temporal and time-frequency correlation-based blind source separation methods. part I: determined and underdetermined linear instantaneous mixtures. Signal Process. 87(3), 374–407 (2007)

    Article  MATH  Google Scholar 

  12. A. Cichocki, R. Zdunek, A.H. Phan, S.-I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation (Wiley, Chichester, 2009)

    Book  Google Scholar 

  13. P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  14. D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, in Proceedings of the NIPS, vol. 13 (MIT Press, 2001)

    Google Scholar 

  15. C.-J. Lin, Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19, 2756–2779 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Zdunek, A. Cichocki, Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems. Comput. Intell. Neurosci. 2008, 3:1–3:13 (2008)

    Article  Google Scholar 

  17. K.H. Knuth, A Bayesian approach to source separation, in Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation: ICA (1999), pp. 283–288

    Google Scholar 

  18. S. Moussaoui, D. Brie, A. Mohammad-Djafari, C. Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Trans. Signal Process. 54(11), 4133–4145 (2006)

    Article  Google Scholar 

  19. A. Selloum, Y. Deville, H. Carfantan, Separation of stellar spectra from hyperspectral images using particle filtering constrained by a parametric spatial mixing model, in Proceedings of IEEE ECMSM (2013)

    Google Scholar 

  20. D. Serre, E. Villeneuve, H. Carfantan, L. Jolissaint, V. Mazet, S. Bourguignon, A. Jarno, Modeling the spatial PSF at the VLT focal plane for MUSE WFM data analysis purpose, in SPIE Proceedings of Astronomical Telescopes and Instrumentation

    Google Scholar 

  21. J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  22. V.P. Pauca, J. Piper, R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 416, 29–47 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Fevotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the itakura-saito divergence: with application to music analysis. Neural Comput. 21, 793–830 (2009)

    Article  MATH  Google Scholar 

  24. B. Gao, W.L. Woo, S.S. Dlay, Variational regularized 2-d nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 703–716 (2012)

    Article  Google Scholar 

  25. D.C. Heinz, C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  26. L. Miao, H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2007)

    Article  Google Scholar 

  27. J. Rapin, J. Bobin, J.-L. Starck, Sparse and non-negative bss for noisy data. IEEE Trans. Signal Process. 61(22), 5620–5632 (2013)

    Article  MathSciNet  Google Scholar 

  28. N. Gillis, R.J. Plemmons, Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis. Linear Algebra Appl. 438, 3991–4007 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Q. Zhang, H. Wang, R.J. Plemmons, V.P. Pauca, Tensor methods for hyperspectral data analysis: a space object material identification study. J. Opt. Soc. Am. A 25(12), 3001–3012 (2008)

    Article  Google Scholar 

  30. N. Gillis, R.J. Plemmons, Dimensionality reduction, classification, and spectral mixture analysis using non-negative underapproximation. Opt. Eng. 50(2), 027001 (2011)

    Article  Google Scholar 

  31. D.L. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in Proceedings of the NIPS (MIT Press, 2003)

    Google Scholar 

  32. S. Moussaoui, D. Brie, J. Idier, Non-negative source separation: range of admissible solutions and conditions for the uniqueness of the solution, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, vol. 5 (2005), pp. 289–292

    Google Scholar 

  33. N. Gillis, Sparse and unique nonnegative matrix factorization. J. Mach. Learn. Res. 13, 3349–3386 (2012)

    MATH  MathSciNet  Google Scholar 

  34. K. Huang, N.D. Sidiropoulos, A. Swami, Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. 62(1), 211–224 (2014)

    Article  MathSciNet  Google Scholar 

  35. G. Casalino, N.D. Buono, C. Mencar, Subtractive clustering for seeding non-negative matrix factorizations. Inf. Sci. 257, 369–387 (2014)

    Article  Google Scholar 

  36. I. Meganem, Y. Deville, S. Hosseini, H. Carfantan, M. Karoui, Extraction of stellar spectra from dense fields in hyperspectral MUSE data cubes using non-negative matrix factorization, in Proceedings of IEEE international Workshop WHISPERS, Lisbon, Portugal (2011)

    Google Scholar 

  37. I. Meganem, S. Hosseini, Y. Deville, Positivity-based separation of stellar spectra using a parametric mixing model, in Proceedings of the 21th European Signal Processing Conference (EUSIPCO), Marrakech, Morocco (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Deville .

Editor information

Editors and Affiliations

Appendix

Appendix

We can write

$$\begin{aligned} \dfrac{\partial J}{\partial \alpha }= & {} \sum _{k} \sum _i ~ \dfrac{\partial J}{\partial M_{ki} } \dfrac{\partial M_{ki}}{\partial \alpha } \end{aligned}$$
(6.29)
$$\begin{aligned} \dfrac{\partial J}{\partial \beta }= & {} \sum _{k} \sum _i ~ \dfrac{\partial J}{\partial M_{ki} } \dfrac{\partial M_{ki}}{\partial \beta }. \end{aligned}$$
(6.30)

Derivation of (6.14) with respect to matrix \(\varvec{M}\) gives

$$\begin{aligned} \dfrac{\partial J}{\partial M_{ki}} = \left( y_{k} - (\varvec{Mx})_{k} \right) (-x_i) = - \left[ (\varvec{y} - \varvec{Mx})\varvec{x}^T \right] _{ki}. \end{aligned}$$
(6.31)

Calculation with respect to \(\alpha \) then reads

$$\begin{aligned} \dfrac{\partial J}{\partial \alpha }= & {} \sum _k \sum _i ~ \left( y_k - (\varvec{Mx})_k \right) (-x_i) \times \dfrac{\partial M_{ki}}{\partial \alpha } \nonumber \\= & {} - \sum _k ~ \left( y_k - (\varvec{Mx})_k \right) \sum _i \dfrac{\partial M_{ki}}{\partial \alpha } x_i \nonumber \\= & {} - \sum _k ~ \left[ \varvec{y} - \varvec{Mx} \right] _k \left[ \dfrac{\varvec{\partial M}}{\varvec{\partial \alpha }} \varvec{x} \right] _k \nonumber \\= & {} - \left[ \dfrac{\varvec{\partial M}}{\varvec{\partial \alpha } } \varvec{x} \right] ^T (\varvec{y} - \varvec{Mx}). \end{aligned}$$
(6.32)

The same type of expression is obtained for \(\beta \):

$$\begin{aligned} \dfrac{\partial J}{\partial \beta } = - \left[ \dfrac{\varvec{\partial M}}{\varvec{\partial \beta } } \varvec{x} \right] ^T (\varvec{y} - \varvec{Mx}). \end{aligned}$$
(6.33)

To compute \(\dfrac{\varvec{\partial M}}{\varvec{\partial \alpha }}\) and \(\dfrac{\varvec{\partial M}}{\varvec{\partial \beta }}\), we use the expression of \(M_{ki}\) as a function of \((\alpha ,\beta )\), given by Eq. (6.10). To simplify notations, as the star positions do not depend on \((\alpha ,\beta )\), we introduce \(Z = ||p_k-z_i|| _{F}^2 \) in expression (6.10).

This gives, for \(\alpha \):

$$\begin{aligned} \dfrac{\partial M_{ki}}{\partial \alpha }= & {} \dfrac{\beta - 1}{\pi } \times \dfrac{-2}{\alpha ^3}\left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta } \nonumber \\&+ \dfrac{\beta - 1}{\pi \alpha ^2} \times (-\beta )\left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta - 1}\times \dfrac{-2}{\alpha ^3}\times ~ Z \nonumber \\= & {} \dfrac{2 ( \beta - 1)}{\pi \alpha ^3}\left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta -1} \left( \dfrac{\beta }{ \alpha ^2}~ Z - \left( 1+\dfrac{Z}{\alpha ^2}\right) \right) \nonumber \\= & {} \dfrac{2 ( \beta - 1)}{\pi \alpha ^3}\left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta -1} \left( \dfrac{\beta -1}{ \alpha ^2}~ Z - 1 \right) \end{aligned}$$
(6.34)

And calculation for \(\beta \) readsFootnote 10

$$\begin{aligned} \dfrac{\partial M_{ki}}{\partial \beta }= & {} \dfrac{ 1}{\pi \alpha ^2} \left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta } - \dfrac{\beta - 1}{\pi \alpha ^2}\left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta } \times \ln \left( 1 + \dfrac{Z}{\alpha ^2} \right) \nonumber \\= & {} \dfrac{ 1}{\pi \alpha ^2} \left( 1 + \dfrac{Z}{\alpha ^2} \right) ^{- \beta } \times \left( 1 - (\beta - 1)\ln \left( 1 + \dfrac{Z}{\alpha ^2} \right) \right) \end{aligned}$$
(6.35)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meganem, I., Hosseini, S., Deville, Y. (2016). Separation of Stellar Spectra Based on Non-negativity and Parametric Modelling of Mixing Operator. In: Naik, G. (eds) Non-negative Matrix Factorization Techniques. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48331-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48331-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48330-5

  • Online ISBN: 978-3-662-48331-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics