Skip to main content

Finding a Perfect Phylogeny from Mixed Tumor Samples

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9289))

Included in the following conference series:

Abstract

Recently, Hajirasouliha and Raphael (WABI 2014) proposed a model for deconvoluting mixed tumor samples measured from a collection of high-throughput sequencing reads. This is related to understanding tumor evolution and critical cancer mutations. In short, their formulation asks to split each row of a binary matrix so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property. In this paper we disprove several claims about this problem, including an NP-hardness proof of it. However, we show that the problem is indeed NP-hard, by providing a different proof. We also prove NP-completeness of a variant of this problem proposed in the same paper. On the positive side, we obtain a polynomial time algorithm for matrix instances in which no column is contained in both columns of a pair of conflicting columns.

This work was supported in part by the Slovenian Research Agency (I0-0035, research program P1-0285, research projects N1-0032, J1-5433, J1-6720, and J1-6743), by the bilateral project BI-FR/15–16–PROTEUS–003, and by the Academy of Finland, grant 274977.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bafna, V., et al.: A note on efficient computation of haplotypes via perfect phylogeny. J. Comput. Biol. 11(5), 858–866 (2004). http://dx.doi.org/10.1089/cmb.2004.11.858

    Article  Google Scholar 

  2. Campbell, P.J., et al.: Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. 105(35), 13081–13086 (2008). http://dx.doi.org/10.1073/pnas.0801523105

    Article  Google Scholar 

  3. Estabrook, G.F., et al.: An idealized concept of the true cladistic character. Math. Biosci. 23(3–4), 263–272 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier Science BV, Amsterdam (2004)

    Google Scholar 

  5. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21(1), 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  7. Ha, G., et al.: Titan: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24(11), 1881–1893 (2014). http://genome.cshlp.org/content/24/11/1881.abstract

    Article  Google Scholar 

  8. Hajirasouliha, I., Raphael, B.J.: Reconstructing mutational history in multiply sampled tumors using perfect phylogeny mixtures. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 354–367. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44753-6_27

    Google Scholar 

  9. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981). http://dx.doi.org/10.1137/0210055

    Article  MathSciNet  MATH  Google Scholar 

  10. Isaacs, R.: Infinite families of nontrivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly 82, 221–239 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiao, W., et al.: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 15, 35 (2014)

    Article  Google Scholar 

  12. Kačar, U.: Problemi popolne filogenije (Perfect Phylogeny Problems). Final project paper. University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia (2015). http://www.famnit.upr.si/sl/izobrazevanje/zakljucna_dela/view/276

  13. Koboldt, D.C., et al.: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012). http://genome.cshlp.org/content/early/2012/02/02/gr.129684.111.abstract

    Article  Google Scholar 

  14. Li, Y., Xie, X.: Mixclone: a mixture model for inferring tumor subclonal populations. BMC Genomics 16(S–2), S1 (2015). http://dx.doi.org/10.1186/1471-2164-16-S2-S1

    Article  Google Scholar 

  15. Miller, C.A., et al.: SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10(8), e1003665+ (2014). http://dx.doi.org/10.1371/journal.pcbi.1003665

    Article  Google Scholar 

  16. Newburger, D.E., et al.: Genome evolution during progression to breast cancer. Genome Res. 23(7), 1097–1108 (2013). http://dx.doi.org/10.1101/gr.151670.112

    Article  Google Scholar 

  17. Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149(5), 994–1007 (2012). http://dx.doi.org/10.1016/j.cell.2012.04.023

    Article  Google Scholar 

  18. Oesper, L., et al.: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol. 14(7), R80 (2013). http://dx.doi.org/10.1186/gb-2013-14-7-r80

    Article  Google Scholar 

  19. van Rens, K.E., et al.: SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP. Bioinformatics 31(7), 1133–1135 (2015). http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btu755?ijkey=XNg7zdRpqjrCkRUI&keytype=ref

  20. Roth, A., et al.: PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11(4), 396–398 (2014). http://view.ncbi.nlm.nih.gov/pubmed/24633410

    Article  Google Scholar 

  21. Salari, R., et al.: Inference of tumor phylogenies with improved somatic mutation discovery. J. Comput. Biol. 20(11), 933–944 (2013). http://dx.doi.org/10.1089/cmb.2013.0106

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Milanič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hujdurović, A., Kačar, U., Milanič, M., Ries, B., Tomescu, A.I. (2015). Finding a Perfect Phylogeny from Mixed Tumor Samples. In: Pop, M., Touzet, H. (eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in Computer Science(), vol 9289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48221-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48221-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48220-9

  • Online ISBN: 978-3-662-48221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics