Skip to main content

The Topological Profile of a Model of Protein Network Evolution Can Direct Model Improvement

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9289))

Included in the following conference series:

Abstract

Biological networks are an attractive construct for studying evolution. One method for inferring evolutionary mechanics is to construct models which generate networks sharing topological characteristics with their empirical counterparts. It remains a challenge to assess, modify, and improve a model based on the topological values it generates. A large range of parameter values may produce a similar topology, and topological properties may vacillate in unexpected ways, frustrating attempts to determine whether the model is flawed or model parameter values are incorrect. We introduce a new method for evaluating the fidelity of an evolutionary network model with respect to topological characteristics by driving topological characteristics towards empirical values concurrently with network generation. From this we compute a topological profile which defines the ability of the network model to produce a desired topology. The topological profile also measures the volatility of characteristics, and the interrelationships among topological characteristics. Our method shows that a top-rated protein interaction network model cannot produce the empirical number of triangles. As triangle count is driven to the empirical value, additional characteristics are propelled towards empirical values. These findings suggest that new model mechanics that increase the number of triangles produced will best enhance the existing model. By providing systematic evaluation of the ability of model mechanics to produce desired topological properties, our framework can help to focus the search for biologically plausible and relevant processes important to network evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhan, A., Galas, D.J., Dewey, T.G.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002). http://bioinformatics.oxfordjournals.org/cgi/content/abstract/18/11/1486

    Article  Google Scholar 

  2. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. J. Comput. Biol. 10(5), 677–687 (2003). http://dx.doi.org/10.1089/106652703322539024

    Article  Google Scholar 

  3. de Silva, E., Stumpf, M.P.H.: Complex networks and simple models in biology. J. R. Soc. Interface 2, 419–430 (2005)

    Article  Google Scholar 

  4. Evlampiev, K., Isambert, H.: Modeling protein network evolution under genome duplication and domain shuffling. BMC Syst. Biol. 1, 49 (2007). http://dx.doi.org/10.1186/1752-0509-1-49

    Article  Google Scholar 

  5. Gibson, T.A., Goldberg, D.S.: Questioning the ubiquity of neofunctionalization. PLoS Comput. Biol. 5(1), e1000252 (2009). http://dx.doi.org/10.1371/journal.pcbi.1000252

    Article  Google Scholar 

  6. Gibson, T.A., Goldberg, D.S.: Reverse engineering the evolution of protein interaction networks. In: Altman, R.B., Dunker, A.K., Hunter, L., Murray, T., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, pp. 190–202 (2009)

    Google Scholar 

  7. Gibson, T.A., Goldberg, D.S.: Improving evolutionary models of protein interaction networks. Bioinformatics 27(3), 376–382 (2011). http://dx.doi.org/10.1093/bioinformatics/btq623

    Article  Google Scholar 

  8. Ispolatov, I., Krapivsky, P.L., Mazo, I., Yuryev, A.: Cliques and duplication-divergence network growth. New J. Phys. 7, 145 (2005). http://stacks.iop.org/1367-2630/7/145

    Article  Google Scholar 

  9. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98(8), 4569–4574 (2001). http://dx.doi.org/10.1073/pnas.061034498

    Article  Google Scholar 

  10. Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the Drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci. USA 102(9), 3192–3197 (2005). http://dx.doi.org/10.1073/pnas.0409515102

    Article  Google Scholar 

  11. Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98(2), 404–409 (2001). http://dx.doi.org/10.1073/pnas.021544898

    Article  MathSciNet  MATH  Google Scholar 

  12. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007). http://dx.doi.org/10.1093/bioinformatics/btl301

    Article  Google Scholar 

  13. Solé, R.V., Pastor-Satorras, R., Smith, E., Kepler, T.B.: A model of large-scale proteome evolution. Advs. Complex Syst. 5, 43–54 (2002). http://www.citebase.org/cgi-bin/citations? id=oai:arXiv.org:cond-mat/0207311

    Article  MATH  Google Scholar 

  14. Tarassov, K., Messier, V., Landry, C.R., Radinovic, S., Molina, M.M.S., Shames, I., Malitskaya, Y., Vogel, J., Bussey, H., Michnick, S.W.: An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008). http://dx.doi.org/10.1126/science.1153878

    Article  Google Scholar 

  15. Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of protein-protein interaction networks. Biochem. Soc. Trans. 31(Pt 6), 1491–1496 (2003). http://dx.doi.org/10.1042/

    Article  Google Scholar 

  16. Thorne, T., Stumpf, M.P.H.: Graph spectral analysis of protein interaction network evolution. J. R. Soc. Interface 12(108), 1–14 (2012)

    Google Scholar 

  17. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000). http://dx.doi.org/10.1038/35001009

    Article  Google Scholar 

  18. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks. ComPlexUs 1, 38–44 (2003)

    Article  Google Scholar 

  19. Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J.F., Dricot, A., Vazquez, A., Murray, R.R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A.S., Motyl, A., Hudson, M.E., Park, J., Xin, X., Cusick, M.E., Moore, T., Boone, C., Snyder, M., Roth, F.P., Barabási, A.L., Tavernier, J., Hill, D.E., Vidal, M.: High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008). http://dx.doi.org/10.1126/science.1158684

    Article  Google Scholar 

Download references

Acknowledgements

Funding: National Science Foundation grant DGE-0841423; National Institutes of Health training grant T15LM009451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, T.A., Goldberg, D.S. (2015). The Topological Profile of a Model of Protein Network Evolution Can Direct Model Improvement. In: Pop, M., Touzet, H. (eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in Computer Science(), vol 9289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48221-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48221-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48220-9

  • Online ISBN: 978-3-662-48221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics