Skip to main content

ART for Antiaging

  • Chapter
  • First Online:
Artemisinin and Nitric Oxide

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 490 Accesses

Abstract

ART can mimic CR to extend yeast lifespan, during which both ART and CR-triggered NO can activate antioxidative responses and convert the metabolic pattern from biosynthesis to degradation. ART also mimics CR to compromise mouse telomere shortening by upregulating antioxidative enzymes for effective ROS scavenging, which is followed by the alleviation of DNA damage and downregulation of tumor suppressors. This is the first time for having found ART exerting an antiaging role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Sharma S, Agarwal V, Roy N (2005) CR augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res 39:55–62

    CAS  Google Scholar 

  • Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I, Benitez J, Herbig U, Blasco MA, Jonkers J, Tarsounas M (2010) BRCA2 acts as RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 17:1461–1469

    CAS  Google Scholar 

  • Ballal RD, Saha T, Fan S, Haddad BR, Rosen EM (2009) BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem 284:36083–36098

    CAS  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases lifespan in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888

    CAS  Google Scholar 

  • Blagosklonny MV (2010) Linking CR to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis 1:e12

    CAS  Google Scholar 

  • Boulton SJ (2006) Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 34:633–645

    CAS  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    CAS  Google Scholar 

  • Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    CAS  Google Scholar 

  • Burnett C, Vallentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 458:1056–1060

    CAS  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome c oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    CAS  Google Scholar 

  • Cerqueira FM, Laurindo FRM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis. PLoS One 6:e18433

    CAS  Google Scholar 

  • Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563

    CAS  Google Scholar 

  • Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power D, Oritz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial nitric oxide synthase. FEBS Lett 443:285–289

    CAS  Google Scholar 

  • Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J (2014) The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401

    CAS  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, Pennington Team CALERIE (2007) CR increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) CR delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    CAS  Google Scholar 

  • D’Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti R, Carruba MO, Valerio A, Nisoli E (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabol 12:362–372

    Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of NOS in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  Google Scholar 

  • Fabrizio P, Pozza SD, Pletcher CM, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    CAS  Google Scholar 

  • Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Mendez C, Converso DP, Estevez A, Carreras MC, Poderoso JJ (2008) Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: implications for the metabolic syndrome. PLoS One 3:e1749

    Google Scholar 

  • Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297:986–994

    CAS  Google Scholar 

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    CAS  Google Scholar 

  • Gad MZ (2010) Anti-aging effects of L-arginine. J Adv Res 1:169–177

    Google Scholar 

  • Gaitanaki C, Konstantina S, Chrysaand S, Beis I (2003) Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol 206:2759–2769

    CAS  Google Scholar 

  • Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043

    CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  Google Scholar 

  • Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy. Aging 1:586–597

    CAS  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Google Scholar 

  • Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO (2011) Does CR induce mitochondrial biogenesis? A reevaluation. FASEB J 25:785–791

    CAS  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  Google Scholar 

  • Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogataand H, Ohta T (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540

    CAS  Google Scholar 

  • Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Comm 3:708

    Google Scholar 

  • Humpherey DM, Toivonen JM, Giannakou M, Partridge L, Brand MD (2009) Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan. Exp Gerontol 44:316–327

    Google Scholar 

  • Jiang JC, Jaruga E, Repnevskya MV, Jazwinski SM (2000) An intervention resembling CR prolongs life span and retard aging in yeast. FASEB J 14:2135–2137

    CAS  Google Scholar 

  • Kaeberlein M, Powers RW, Steffen KK (2005a) Cell biology: regulation of yeast replicative lifespan by TOR and Sch9 response to nutrients. Science 310:1193–1196

    CAS  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005b) Increased lifespan due to CR in respiratory deficient yeast. PLoS Genet 1:e69

    Google Scholar 

  • Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3:e84

    Google Scholar 

  • Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: A TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84

    CAS  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Cur Biol 14:885–890

    CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    CAS  Google Scholar 

  • Kharade SV, Mittal N, Das SP, Sinha P, Roy N (2005) Mrg19 depletion increase S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett 579:6809–6813

    CAS  Google Scholar 

  • King MA, Hands S, Hafiz F, Mizushima N, Tolkovsky AM, Wyttenbach A (2008) Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol Pharmacol 73:1052–1063

    CAS  Google Scholar 

  • Kig C, Temizkan G (2009) Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238:59–66

    CAS  Google Scholar 

  • Koubova J, Guarente L (2005) How does calorie restriction work? Genes Dev 17:313–321

    Google Scholar 

  • Lanza IR, Nair KS (2010) Mitochondrial function as a determinant of life span. Pflugers Arch Eur J Physiol 459:277–289

    CAS  Google Scholar 

  • Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR III, Dasari S, Walrand S, Short KR, Johnson ML, Robinson ML, Schimke JM, Jakaitis DR, Asmann YW, Sun ZF, Nair S (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788

    CAS  Google Scholar 

  • Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, Koh EH, Won JC, Kim MS, Oh GT, Yoon M, Lee KU, Park JY (2006) AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPAR alpha and PGC-1. Biochem Biophys Res Commun 340:291–295

    CAS  Google Scholar 

  • Lefevre SD, van Roermund CW, Wanders RJA, Veenhuis M, van der Klei IJ (2013) The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 12:784–793

    CAS  Google Scholar 

  • Lemire BD, Behrendt M, DeCorby A, Gásková D (2009) C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech Ageing Dev 130:461–465

    CAS  Google Scholar 

  • Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR, Kool M, Agnihotri S, El-Naggar A, Yu B, Somasekharan SP, Faubert B, Bridon G, Tognon CE, Mathers J, Thomas R, Li A, Barokas A, Kwok B, Bowden M, Smith S, Wu X, Korshunov A, Hielscher T, Northcott PA, Galpin JD, Ahern CA, Wang Y, McCabe MG, Collins VP, Jones RG, Pollak M, Delattre O, Gleave ME, Jan E, Pfister SM, Proud CG, Derry WB, Taylor MD, Sorensen PH (2013) The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 23:1064–1079

    Google Scholar 

  • Lewinska A, Macierzynska E, Grzelak A, Bartosz G (2011) A genetic analysis of NO-mediated signaling during chronological aging in the yeast. Biogerontol 12:309–320

    CAS  Google Scholar 

  • Li B, Skinner C, Castello PR, Kato M, Easlon E, Xie L, Li TL, Lu SP, Wang C, Tsang F, Poyton RO, Lin SJ (2011) Identification of potential CR-mimicking yeast mutants with increased mitochondrial respiratory chain and NO levels. J Aging Res 2011(673185)

    Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by CR in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) CR extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    CAS  Google Scholar 

  • Longo VD, Fontana L (2010) CR and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98

    CAS  Google Scholar 

  • López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773

    Google Scholar 

  • Mason M, Nicholes GP, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713

    CAS  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of calorie restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    CAS  Google Scholar 

  • Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V, Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing hydrogen peroxide and SOD activity. Proc Natl Acad Sci USA 107:15123–15128

    CAS  Google Scholar 

  • Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL (2012) A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11:150–161

    CAS  Google Scholar 

  • Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Calorie restriction and resveratrol promote longevity through the SIRT-1-dependent induction of autophagy. Cell Death Dis 1:e10

    CAS  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    CAS  Google Scholar 

  • Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by nitric oxide yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512

    CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    CAS  Google Scholar 

  • Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862

    CAS  Google Scholar 

  • Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires downregulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1:131–145

    CAS  Google Scholar 

  • Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678

    CAS  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    CAS  Google Scholar 

  • Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    CAS  Google Scholar 

  • Pervin S, Singh R, Hernandez E,Wu G, Chaudhuri G (2007) Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res 67:289–299

    Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronological ageing yeast. Mech Ageing Dev 127:733–740

    Google Scholar 

  • Piper MDW, Partridge L, Raubenheimer D, Simpson SJ (2011) Dietary restriction and aging: a unifying perspective. Cell Metab 14:154–160

    CAS  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Expression of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:171–184

    Google Scholar 

  • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) CR reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabol 12:662–667

    CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 434:113–118

    CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to CR. Proc Natl Acad Sci USA 101:15998–16003

    CAS  Google Scholar 

  • Rollis C, Codlin S, Bähler J (2013) TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell 12:563–573

    Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qssab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    CAS  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    CAS  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    CAS  Google Scholar 

  • Shaw RJ (2009) LKB1 and AMPK control of mTOR signaling and growth. Acta Physiol 196:65–80

    CAS  Google Scholar 

  • Skinner C, Lin SJ (2010) Effects of calorie restriction on life span of microorganisms. Appl Microbiol Biotechnol 88:817–828

    CAS  Google Scholar 

  • Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-Activated Protein Kinases and reactive oxygen species: How Can ROS Activate MAPK Pathways? J. Signal Transduct 2011(792639)

    Google Scholar 

  • Spindler SR (2010) CR: from soup to nuts. Ageing Res Rev 9:324–353

    CAS  Google Scholar 

  • Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345–350

    CAS  Google Scholar 

  • Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S (2006) Metformin increases the PGC-1 alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101:1685–1692

    CAS  Google Scholar 

  • Taylor CT, Moncada S (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia, Arteriosclerosis, Thrombosis. Vascul Biol 30:643–647

    CAS  Google Scholar 

  • Thomson DM, Fick CA, Gordon SE (2008) AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol 104:625–632

    CAS  Google Scholar 

  • Timmers S, Konings E, Bilet L, Houkooper RH, van der Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabol 14:612–622

    CAS  Google Scholar 

  • Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–1780

    CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    CAS  Google Scholar 

  • Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One 8:e53760

    CAS  Google Scholar 

  • Walker G, Houthoofd K, Vanfleteran JR, Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mechanism Age Develop 126:929–937

    CAS  Google Scholar 

  • Wang DT, Zeng QP (2014) Modulation of yeast transporter gene expression and lipid metabolism by hormesis mimicking calorie restriction. Microbiol China 41:2012–2021

    Google Scholar 

  • Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2014) Artemisinin mimics calorie restriction to initiate antioxidative responses and compromise telomere shortening. PeerJ PrePrints 2:e565v1

    Google Scholar 

  • Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015a) Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. Sci China Life Sci 57:1–15

    Google Scholar 

  • Wang DT, He J, Wu M, Li SM, Gao Q, Zeng QP (2015b) Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice. Peer J 3:e822

    Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  Google Scholar 

  • Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556

    Google Scholar 

  • Youngman LD, Park JY, Ames BN (1992) Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA 89:9112–9116

    CAS  Google Scholar 

  • Zeng QP, Zhang PZ (2011) Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. Nitric Oxide 24:110–112

    CAS  Google Scholar 

  • Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artesunate potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes 4:223

    Google Scholar 

  • Zhang S, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One 4:e7472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Ping Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zeng, QP. (2015). ART for Antiaging. In: Artemisinin and Nitric Oxide. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47688-8_6

Download citation

Publish with us

Policies and ethics