Skip to main content

ART for Antibacterial Infection

  • Chapter
  • First Online:
Artemisinin and Nitric Oxide

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 477 Accesses

Abstract

In Gram positive bacteria, bNOS-derived NO confers the protection of bacteria from environmental stress such as antibiotic challenges. ART can exert an antibiotic sensitizing role through inhibiting bNOS and CAT. Either in vivo or in vitro, ART can increase the bacteriocidal activity of antibiotics by abrogating the beneficial NO and enhancing the harmful H2O2, demonstrating a potential role in combating multidrug resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA (2009) Nitric oxide formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc Natl Acad Sci USA 106:16221–16226

    Google Scholar 

  • Bol DK, Yasbin RE (1994) Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis. J Bacteriol 176:6744–6748

    CAS  Google Scholar 

  • Corker H, Poole RK (2003) Nitric oxide formation by Escherichia coli. J Biol Chem 278:31584–31592

    Article  CAS  Google Scholar 

  • Crane BR (2008) The enzymology of nitric oxide in bacterial pathogenesis and resistance. Biochem Soc Trans 36:1149–1154

    Google Scholar 

  • Gusarov I, Nudler E (2005) Nitric oxide-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102:13855–13860

    Article  CAS  Google Scholar 

  • Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147

    Article  CAS  Google Scholar 

  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  CAS  Google Scholar 

  • Hawkey PM (2008) Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect 14:159–165

    Google Scholar 

  • Kono Y, Shibata H, Adachi K, Tanaka K (1994) Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. Arch Biochem Biophys 311:153–159

    Article  CAS  Google Scholar 

  • Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527

    Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S,Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Google Scholar 

  • Li B, Yao Q, Pan XC, Wang N, Zhang R, Li J, Ding G, Liu X, Wu C, Ran D, Zheng J, Zhou H (2011) Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrABTolC. J Antimicrob Chemother 66:769–777

    Article  CAS  Google Scholar 

  • Patel BA, Crane B (2010) When it comes to antibiotics, bacteria show some NO how. J Mol Cell Biol 2:234–236

    Article  CAS  Google Scholar 

  • Patel BA, Moreau M, Widom J, Chen H, Yin LF, Hua YJ, Crane BR (2009) Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light. Proc Natl Acad Sci USA 106:18183–18188

    Google Scholar 

  • Plate L, Marletta MA (2012) NO modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46:449–460

    Article  CAS  Google Scholar 

  • Raviglione MC (2007) The new stop TB strategy and the global plan to stop TB, 2006–2015. Bull World Health Organ 85:327

    Google Scholar 

  • Robert A, Benoit-Vical F, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680

    Article  CAS  Google Scholar 

  • Taylor CT, Moncada S (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30:643–647

    Article  CAS  Google Scholar 

  • Vallance P, Charles I (1998) Nitric oxide as an antimicrobial agent: does NO always mean NO? Gut 42:313–314

    Article  CAS  Google Scholar 

  • van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN (2008) The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 283:9587–9594

    Google Scholar 

  • Walsh TR, Toleman MA, Jones RN (2007) Comment on: occurrence, prevalence and genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospitals. J Antimicrob Chemother 59:799–800

    Google Scholar 

  • Woodmansee AN, Imlay JA (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055–34066

    Article  CAS  Google Scholar 

  • Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE, Dunman PM, Magarvey NA (2010) Staphylococcus aureus non-ribosomal peptide secondary metabolites regulate virulence. Science 329:294–296

    Google Scholar 

  • Zeng QP, Zhang PZ (2011) Artemisinin mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. Nitric Oxide 24:110–112

    Article  CAS  Google Scholar 

  • Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artesunate potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes 4:223

    Article  Google Scholar 

  • Zhang S, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS ONE 4:e7472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Ping Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zeng, QP. (2015). ART for Antibacterial Infection. In: Artemisinin and Nitric Oxide. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47688-8_4

Download citation

Publish with us

Policies and ethics