Skip to main content

Background

  • Chapter
  • First Online:
Artemisinin and Nitric Oxide

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 491 Accesses

Abstract

ART has been found, for the first time, to alkylate the heme-containing enzymes (hemoenzymes) by covalently conjugating the prosthetic heme. A high dose of ART can kill cancer cells and bacteria through compromising protective NO production. A low dose of ART can mimic CR to extend lifespan and reduce weight by triggering mitochondrial biogenesis. Therefore, ART can exert versatile beneficial effects on human health in addition to antimalaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ev I (2010) Signaling and damaging functions of free radicals in aging—Free radical theory, hormesis, and TOR. Aging Dis 1:75–88

    Google Scholar 

  • Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS ONE 7:e34494

    Article  CAS  Google Scholar 

  • Borutaite V, Brown GC (2006) S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production. Biochim Biophys Acta 1757:562–566

    Google Scholar 

  • Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by nitric oxide. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89

    CAS  Google Scholar 

  • Cerqueira FM, Laurindo FRM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling and CR increase fasting eNOS, Akt and mitochondrial biogenesis. PLoS ONE 6:e18433

    Article  CAS  Google Scholar 

  • Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab 22:1-11

    Google Scholar 

  • Forstermann U (2010) Uncoupling of endothelial NOS in cardiovascular disease and its pharmacological reversal. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Gao Q, Wu P, He J, Zeng QP (2015) Artesunate and betulilic acid block liposaccharide-induced angiogenesis and hyperplasia in mice. Chin Pharm J 50:7–16

    Google Scholar 

  • Gusarov I, Hatalin SK, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  CAS  Google Scholar 

  • Hall SS (2014) Young blood. Science 345:1234–1237

    Article  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 1:298–300

    Article  Google Scholar 

  • Harman D (1972) Free radical theory of aging: dietary implications. Am J Clin Nutr 25:839–843

    CAS  Google Scholar 

  • Kaiser J (2003) Sipping from a poisoned chalice. Science 302:376–379

    Article  CAS  Google Scholar 

  • Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy

    Google Scholar 

  • Meshnick SR, Taylor TE, Kamchonwongpaisan S (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189

    Article  CAS  Google Scholar 

  • Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Release 60:1534–1544

    Article  CAS  Google Scholar 

  • Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862

    Article  CAS  Google Scholar 

  • Patcher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  Google Scholar 

  • Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveri A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  CAS  Google Scholar 

  • Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting prospective on stressful biological situations. Biol Chem 385:1–10

    Article  CAS  Google Scholar 

  • Robert A, Benoit-Vical F, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680

    Article  CAS  Google Scholar 

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–652

    Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279:L1005–L1028

    CAS  Google Scholar 

  • Thomas DD, Liu X, Kantrow SP, Lancaster JRJ (2001) The biological life time of nitric oxide: implications for the perivascular dynamics of nitric oxide and oxygen. Proc Natl Acad Sci USA 98:355–360

    Article  CAS  Google Scholar 

  • Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi D, Harris CC, Wink DA (2004) Hypoxic inducible factor 1 alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci USA 101:8894–8899

    Article  CAS  Google Scholar 

  • Thomas DD, Flores-Santana W, Switzer CH, Wink DA, Ridnour LA (2010) Determinants of nitric oxide chemistry: Impact of cell signaling processes. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Trujillo M, Alvarez B, Souza JMS, Romero N, Castro L, Thomson L, Radi R (2010) Mechanisms and biological consequences of peroxynitrite-dependent protein oxidation and nitration. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS ONE 8:e53760

    Article  CAS  Google Scholar 

  • Wang DT, Zeng QP (2014) Modulation of yeast transporter gene expression and lipid metabolism by hormesis mimicking calorie restriction. Microbiol China 41: 2012-2021

    Google Scholar 

  • Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015a) Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. Sci China Life Sci 57

    Google Scholar 

  • Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015b) Artemisinin mimics calorie restriction to initiate antioxidative responses and compromise telomere shortening. PeerJ PrePrints 2:e565v1

    Google Scholar 

  • Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724–738

    Article  Google Scholar 

  • Xu WM, Charles IG, Moncada S (2005) Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res 15: 63–65

    Google Scholar 

  • Zeng QP, Zhang PZ (2011) Artemisinin mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. NO 24:110–112

    Article  CAS  Google Scholar 

  • Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artemisinin potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes 4:223

    Article  Google Scholar 

  • Zhang SM, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS ONE 4:e7472

    Google Scholar 

  • Zhang S, Chen H, Gerhard GS (2010) Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact 186:30–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Ping Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zeng, QP. (2015). Background. In: Artemisinin and Nitric Oxide. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47688-8_1

Download citation

Publish with us

Policies and ethics