Skip to main content

What Percentage of Programs Halt?

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

Fix an optimal Turing machine U and for each n consider the ratio \(\rho ^U_n\) of the number of halting programs of length at most n by the total number of such programs. Does this quantity have a limit value? In this paper, we show that it is not the case, and further characterise the reals which can be the limsup of such a sequence \(\rho ^U_n\). We also study, for a given optimal machine U, how hard it is to approximate the domain of U from the point of view of coarse and generic computability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited [once more]. Technical report (2012). arxiv:1204.0201

    Google Scholar 

  2. Bienvenu, L., Shen, A.: Random semicomputable reals revisited. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 31–45. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and chaitin omega numbers. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 596–606. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Calude, C., Nies, A., Staiger, L., Stephan, F.: Universal recursively enumerable sets of strings. Theoretical Computer Science 412(22), 2253–2261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R., Hirschfeldt, D.: Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York (2010)

    Book  MATH  Google Scholar 

  6. Downey, R.G., Jockusch Jr., C.G., Schupp, P.E.: Asymptotic density and computably enumerable sets. Journal of Mathematical Logic 13(02) (2013)

    Google Scholar 

  7. Hamkins, J.D., Miasnikov, A.: The halting problem is decidable on a set of asymptotic probability one. Notre Dame Journal of Formal Logic 47(4) (2006)

    Google Scholar 

  8. Köhler, S., Schindelhauer, C., Ziegler, M.: On approximating real-world halting problems. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 454–466. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal on Computing 31, 199–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, New York (2007)

    Google Scholar 

  11. Lynch, N.: Approximations to the halting problem. Journal of Computer and System Sciences, 9–143 (1974)

    Google Scholar 

  12. Miller, J.S.: Every 2-random real is Kolmogorov random. Journal of Symbolic Logic 69(3), 907–913 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nies, A.: Computability and randomness. Oxford University Press, Oxford Logic Guides (2009)

    Google Scholar 

  14. Schindelhauer, C., Jakoby, A.: The non-recursive power of erroneous computation. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, p. 394. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Claus Peter Schnorr: Optimal enumerations and optimal Gödel numberings. Mathematical Systems Theory 8(2), 181–191 (1974)

    Google Scholar 

  16. Valmari, A.: The asymptotic proportion of hard instances of the halting problem. Technical report, November 2014. arxiv:1307.7066v2

    Google Scholar 

  17. Vereshchagin, N., Uspensky, V., Shen. A.: Kolmogorov complexity and algorithmic randomness (In Russian. See www.lirmm.fr/~ashen for the draft translation.). MCCME (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bienvenu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bienvenu, L., Desfontaines, D., Shen, A. (2015). What Percentage of Programs Halt?. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics