Skip to main content

Solid-State NMR Studies of Zeolites

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 3351 Accesses

Abstract

Due to having unique pore structures and intrinsic acid–base properties, zeolites have been widely used in ion exchange, adsorption, and catalysis in chemical and petrochemical industry. Solid-state NMR is a well-established tool for the structural characterization of zeolites. The detailed information about the zeolite framework can be obtained from multinuclear and multidimensional 1H, 29Si, 27Al, and 17O MAS NMR spectroscopy. The structure and communication of cages and channels in zeolites can be extracted by 129Xe NMR spectroscopy. The acidic properties of zeolites can be well characterized through solid-state NMR probe molecule techniques. In addition, two-dimensional (2D) 1H–1H and 27Al–27Al double-quantum (DQ) MAS NMR experiments are utilized to probe the spatial proximities and the synergy effect between different acid sites in zeolites. Moreover, in situ solid-state NMR is able to explore the mechanism of zeolite-catalyzed reactions by monitoring the evolution of the reactants, intermediates, and products. The crystallization mechanism for synthesis of zeolites can be elucidated by detecting the variation of framework 29Si, 27Al, and 31P NMR signals at different crystallization stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coster D, Blumenfeld AL, Fripiat JJ (1994) Lewis acid sites and surface aluminum in aluminas and zeolites: a high resolution NMR study. J Phys Chem 98:6201–6211

    Article  CAS  Google Scholar 

  2. Kiricsi I, Flego C, Pazzuconi G, Parker WO, Millini R, Perego C, Bellussi G (1994) Progress toward understanding zeolite-beta acidity: an IR and 27Al NMR spectroscopic study. J Phys Chem 98:4627–4634

    Article  CAS  Google Scholar 

  3. DeCanio SJ, Sohn JR, Fritz PO, Lunsford JH (1986) Acid catalysis by dealuminated zeolite-Y: I. Methanol dehydration and cumene dealkylation. J Catal 101:132–141

    Article  CAS  Google Scholar 

  4. Beyerlein RA, McVicker GB, Yacullo LN, Ziemiak JJ (1988) The influence of framework and nonframework aluminum on the acidity of high-silica, proton-exchanged FAU-framework zeolites. J Phys Chem 92:1967–1970

    Article  CAS  Google Scholar 

  5. Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM-5 propane aromatization catalysts. J Catal 179:192–202

    Article  CAS  Google Scholar 

  6. Xu J, Zheng A, Wang X, Qi G, Su J, Du J, Gan Z, Wu J, Wang W, Deng F (2012) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Sci 3:2932–2940

    Article  CAS  Google Scholar 

  7. Wu J-F, Yu S-M, Wang WD, Fan Y-X, Bai S, Zhang C-W, Gao Q, Huang J, Wang W (2013) Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H–ZSM-5 zeolite. J Am Chem Soc 135:13567–13573

    Article  CAS  Google Scholar 

  8. Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Catal Today 86:5–16

    Article  CAS  Google Scholar 

  9. Katada N, Igi H, Kim JH, Niwa M (1997) Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J Phys Chem B 101:5969–5977

    Article  CAS  Google Scholar 

  10. Wang Q, Cui ZM, Cao CY, Song WG (2011) 0.3 angstrom makes the difference: dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites. J Phys Chem C 115:24987–24992

    Article  CAS  Google Scholar 

  11. Brown SP (2009) Recent advances in solid-state MAS NMR methodology for probing structure and dynamics in polymeric and supramolecular systems. Macromol Rapid Commun 30:688–716

    Article  CAS  Google Scholar 

  12. Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Chem Soc Rev 39:3445–3453

    Article  CAS  Google Scholar 

  13. Fu DW, Cai HL, Li SH, Ye Q, Zhou L, Zhang W, Zhang Y, Deng F, Xiong RG (2013) 4-Methoxyanilinium perrhenate 18-crown-6: a new ferroelectric with order originating in swinglike motion slowing down. Phys Rev Lett 110:257601

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhang W, Li SH, Ye Q, Cai HL, Deng F, Xiong RG, Huang SPD (2012) Ferroelectricity induced by ordering of twisting motion in a molecular rotor. J Am Chem Soc 134:11044–11049

    Article  CAS  Google Scholar 

  15. Sun ZH, Luo JH, Zhang SQ, Ji CM, Zhou L, Li SH, Deng F, Hong MC (2013) Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast. Adv Mater 25:4159–4163

    Article  CAS  Google Scholar 

  16. Wang W, Hunger M (2008) Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc Chem Res 41:895–904

    Article  CAS  Google Scholar 

  17. Zhang WP, Xu ST, Han XW, Bao XH (2012) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41:192–210

    Article  CAS  Google Scholar 

  18. Jiang YJ, Huang J, Dai WL, Hunger M (2011) Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl Magn Reson 39:116–141

    Article  CAS  Google Scholar 

  19. Zhang L, Ren YH, Yue B, He HY (2012) Recent development in in situ NMR study on heterogeneous catalysis: mechanisms of light alkane functionalisation. Chem Commun 48:2370–2384

    Article  CAS  Google Scholar 

  20. Li S, Deng F (2013) Recent advances of solid-state NMR studies on zeolites. Annu Rep NMR Spectrosc 78:1–54

    Article  CAS  Google Scholar 

  21. Freude D, Hunger M, Pfeifer H, Schwieger W (1986) 1H MAS NMR studies on the acidity of zeolites. Chem Phys Lett 128:62–66

    Article  CAS  Google Scholar 

  22. Freude D, Klinowski J (1988) Solid state 1H NMR studies of the structure of the active site in zeolite H-ZSM-5. J Chem Soc Chem Commun 1411–1413

    Google Scholar 

  23. Hunger M, Freude D, Frohlich T, Pfeifer H, Schwieger W (1987) 1H MAS NMR studies of ZSM-5 type zeolites. Zeolites 7:108–110

    Article  CAS  Google Scholar 

  24. Hunger M, Freude D, Pfeifer H (1991) Magic angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Bronsted acid and Lewis acid sites in zeolites and amorphous silica aluminas. J Chem Soc Faraday Trans 87:657–662

    Article  CAS  Google Scholar 

  25. Grey CP, Vega AJ (1995) Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. J Am Chem Soc 117:8232–8242

    Article  CAS  Google Scholar 

  26. Li SH, Zheng AM, Su YC, Zhang HL, Chen L, Yang J, Ye CH, Deng F (2007) Bronsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc 129:11161–11171

    Article  CAS  Google Scholar 

  27. Hunger M (1997) Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal Rev Sci Eng 39:345–393

    Article  CAS  Google Scholar 

  28. Hu W, Luo Q, Su YC, Chen L, Yue Y, Ye CH, Deng F (2006) Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Microporous Mesoporous Mater 92:22–30

    Article  CAS  Google Scholar 

  29. Derouane EG, Nagy JB, Gabelica Z, Blom N (1982) An 27Al NMR investigation of ZSM-5 type zeolite aluminosilicate precursor species. Zeolites 2:299–302

    Article  CAS  Google Scholar 

  30. Engelhardt G, Fahlke B, Magi M, Lippmaa E (1983) High resolution solid state 29Si and 27Al NMR of aluminosilicate intermediates in zeolite-A synthesis. Zeolites 3:292–294

    Article  CAS  Google Scholar 

  31. Klinowski J, Thomas JM, Fyfe CA, Gobbi GC, Hartman JS (1983) A highly siliceous structural analog of zeolite Y: high resolution solid state 29Si and 27Al NMR studies. Inorg Chem 22:63–66

    Article  CAS  Google Scholar 

  32. Liu W, Xu Y, Wong ST, Wang L, Qiu J, Yang N (1997) Methane dehydrogenation and aromatization in the absence of oxygen on Mo/HZSM-5: a study on the interaction between Mo species and HZSM-5 by using 27Al and 29Si MAS NMR. J Mol Catal A Chem 120:257–265

    Article  CAS  Google Scholar 

  33. Zhang WP, Bao XH, Guo XW, Wang XS (1999) A high-resolution solid-state NMR study on nano-structured H-ZSM-5 zeolite. Catal Lett 60:89–94

    Article  CAS  Google Scholar 

  34. Li SH, Huang SJ, Shen WL, Zhang HL, Fang HJ, Zheng AM, Liu SB, Deng F (2008) Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. J Phys Chem C 112:14486–14494

    Article  CAS  Google Scholar 

  35. Seiler M, Wang W, Hunger M (2001) Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy. J Phys Chem B 105:8143–8148

    Article  CAS  Google Scholar 

  36. Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M (2004) State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J Phys Chem B 108:14305–14310

    Article  CAS  Google Scholar 

  37. Jiao J, Kanellopoulos J, Wang W, Ray SS, Foerster H, Freude D, Hunger M (2005) Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T. Phys Chem Chem Phys 7:3221–3226

    Article  CAS  Google Scholar 

  38. Medek A, Harwood JS, Frydman L (1995) Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 117:12779–12787

    Article  CAS  Google Scholar 

  39. Amoureux JP, Fernandez C, Steuernagel S (1996) Z filtering in MQ-MAS NMR. J Magn Reson Ser A 123:116–118

    Article  CAS  Google Scholar 

  40. Yu ZW, Zheng AM, Wang QA, Chen L, Xu J, Amoureux JP, Deng F (2010) Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed 49:8657–8661

    Article  CAS  Google Scholar 

  41. Sklenak S, Dedecek J, Li C, Wichterlova B, Gabova V, Sierka M, Sauer J (2007) Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew Chem Int Ed 46:7286–7289

    Article  CAS  Google Scholar 

  42. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM (2000) Stepwise dealumination of zeolite beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J Am Chem Soc 122:12842–12847

    Article  CAS  Google Scholar 

  43. Yan ZM, Ding MA, Zhuang JQ, Liu XC, Liu XM, Han XW, Bao XH, Chang FX, Xu L, Liu ZM (2003) On the acid-dealumination of USY zeolite: a solid state NMR investigation. J Mol Catal A Chem 194:153–167

    Article  CAS  Google Scholar 

  44. Lippmaa E, Magi M, Samoson A, Tarmak M, Engelhardt G (1981) Investigation of the structure of zeolites by solid state high resolution Si-29 NMR spectroscopy. J Am Chem Soc 103:4992–4996

    Article  CAS  Google Scholar 

  45. Engelhardt G, Lohse U, Samoson A, Magi M, Tarmak M, Lippmaa E (1982) High resolution 29Si NMR of dealuminated and ultrastable Y zeolites. Zeolites 2:59–62

    Article  CAS  Google Scholar 

  46. Melchior MT, Vaughan DEW, Jarman RH, Jacobson AJ (1982) The characterization of Si-Al ordering in A-type zeolite (ZK4) by 29Si NMR. Nature 298:455–456

    Article  CAS  Google Scholar 

  47. Fyfe CA, Feng Y, Grondey H, Kokotailo GT, Gies H (1991) One dimensional and 2-dimensional high resolution solid state NMR studies of zeolite lattice structures. Chem Rev 91:1525–1543

    Article  CAS  Google Scholar 

  48. Ramdas S, Klinowski J (1984) A simple correlation between isotropic 29Si NMR chemical shifts and T-O-T angles in zeolite frameworks. Nature 308:521–523

    Article  CAS  Google Scholar 

  49. Thomas JM, Klinowski J, Ramdas S, Hunter BK, Tennakoon DTB (1983) The evaluation of non-equivalent tetrahedral sites from 29Si NMR chemical shifts in zeolites and related aluminosilicates. Chem Phys Lett 102:158–162

    Article  CAS  Google Scholar 

  50. Hammond KD, Dogan F, Tompsett GA, Agarwal V, Conner WC Jr, Grey CP, Auerbach SM (2008) Spectroscopic signatures of nitrogen-substituted zeolites. J Am Chem Soc 130:14912–14913

    Article  CAS  Google Scholar 

  51. Bussemer B, Schroder KP, Sauer J (1997) Ab initio predictions of zeolite structures and 29Si NMR chemical shifts. Solid State Nucl Magn Reson 9:155–164

    Article  CAS  Google Scholar 

  52. Brouwer DH, Darton RJ, Morris RE, Levitt MH (2005) A solid-state NMR method for solution of zeolite crystal structures. J Am Chem Soc 127:10365–10370

    Article  CAS  Google Scholar 

  53. Brouwer DH, Kristiansen PE, Fyfe CA, Levitt MH (2005) Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: a new method for investigating three-dimensional structures of zeolite frameworks. J Am Chem Soc 127:542–543

    Article  CAS  Google Scholar 

  54. Lesage A, Bardet M, Emsley L (1999) Through-bond carbon-carbon connectivities in disordered solids by NMR. J Am Chem Soc 121:10987–10993

    Article  CAS  Google Scholar 

  55. Janes N, Oldfield E (1986) 17O NMR study of bonding in silicates: the orbital controversy. J Am Chem Soc 108:5743–5753

    Article  CAS  Google Scholar 

  56. Timken HKC, Turner GL, Gilson JP, Welsh LB, Oldfield E (1986) Solid state 17O nuclear magnetic resonance spectroscopic studies of zeolites and related systems. J Am Chem Soc 108:7231–7235

    Article  CAS  Google Scholar 

  57. Gullion T, Schaefer J (1989) Rotational echo double resonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  58. Peng LM, Liu Y, Kim NJ, Readman JE, Grey CP (2005) Detection of Bronsted acid sites in zeolite HY with high-field O-17-MAS-NMR techniques. Nat Mater 4:216–219

    Article  CAS  Google Scholar 

  59. Peng L, Huo H, Gan Z, Grey CP (2008) 17O MQMAS NMR studies of zeolite HY. Microporous Mesoporous Mater 109:156–162

    Article  CAS  Google Scholar 

  60. Peng L, Huo H, Liu Y, Grey CP (2007) 17O magic angle spinning NMR studies of Bronsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 129:335–346

    Article  CAS  Google Scholar 

  61. Huo H, Peng L, Gan Z, Grey CP (2012) Solid-state MAS NMR studies of Bronsted acid sites in zeolite H-mordenite. J Am Chem Soc 134:9708–9720

    Article  CAS  Google Scholar 

  62. Demarquay J, Fraissard J (1987) 129Xe NMR of xenon adsorbed on zeolites: relationship between the chemical shift and the void space. Chem Phys Lett 136:314–318

    Article  CAS  Google Scholar 

  63. Ito T, Fraissard J (1982) 129Xe NMR study of xenon adsorbed on zeolites. J Chem Phys 76:5225–5229

    Article  CAS  Google Scholar 

  64. Fraissard J, Ito T (1988) 129Xe NMR-study of adsorbed xenon: a new method for studying zeolites and metal-zeolites. Zeolites 8:350–361

    Article  CAS  Google Scholar 

  65. Chen F, Deng F, Cheng MJ, Yue Y, Ye CH, Bao XH (2001) Preferential occupation of xenon in zeolite MCM-22 as revealed by 129Xe NMR spectroscopy. J Phys Chem B 105:9426–9432

    Article  CAS  Google Scholar 

  66. Chen F, Zhang MJ, Han Y, Xiao FS, Yue Y, Ye CH, Deng F (2004) Characterization of microporosity in ordered mesoporous material MAS-7 by 129Xe NMR spectroscopy. J Phys Chem B 108:3728–3734

    Article  CAS  Google Scholar 

  67. Zeng D, Yang J, Wang J, Xu J, Yang Y, Ye C, Deng F (2007) Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged H-ZSM-5 zeolite. Microporous Mesoporous Mater 98:214–219

    Article  CAS  Google Scholar 

  68. Huang SJ, Huh S, Lo PS, Liu SH, Lin VSY, Liu SB (2005) Hyperpolarized 129Xe NMR investigation of multifunctional organic/inorganic hybrid mesoporous silica materials. Phys Chem Chem Phys 7:3080–3087

    Article  CAS  Google Scholar 

  69. Lercher JA, Grundling C, EderMirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27:353–376

    Article  CAS  Google Scholar 

  70. Lunsford JH, Rothwell WP, Shen W (1985) Acid sites in zeolite Y: a solid state NMR and infrared study using trimethylphosphine as a probe molecule. J Am Chem Soc 107:1540–1547

    Article  CAS  Google Scholar 

  71. Lunsford JH (1997) Characterization of acidity in zeolites and related oxides using trimethylphosphine as a probe. Top Catal 4:91–98

    Article  CAS  Google Scholar 

  72. Luo Q, Deng F, Yuan ZY, Yang J, Zhang MJ, Yue Y, Ye CH (2003) Using trimethylphosphine as a probe molecule to study the acid states in Al-MCM-41 materials by solid-state NMR spectroscopy. J Phys Chem B 107:2435–2442

    Article  CAS  Google Scholar 

  73. Chu Y, Yu Z, Zheng A, Fang H, Zhang H, Huang S-J, Liu S-B, Deng F (2011) Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J Phys Chem C 115:7660–7667

    Article  CAS  Google Scholar 

  74. Biaglow AI, Gorte RJ, Kokotailo GT, White D (1994) A probe of Bronsted site acidity in zeolites: 13C chemical shift of acetone. J Catal 148:779–786

    Article  CAS  Google Scholar 

  75. Xu T, Munson EJ, Haw JF (1994) Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones. J Am Chem Soc 116:1962–1972

    Article  CAS  Google Scholar 

  76. Yang J, Janik MJ, Ma D, Zheng A, Zhang M, Neurock M, Davis RJ, Ye C, Deng F (2005) Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. J Am Chem Soc 127:18274–18280

    Article  CAS  Google Scholar 

  77. Rakiewicz EF, Peters AW, Wormsbecher F, Sutovich KJ, Mueller KT (1998) Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. J Phys Chem B 102:2890–2896

    Article  CAS  Google Scholar 

  78. Chen W-H, Ko H-H, Sakthivel A, Huang S-J, Liu S-H, Lo A-Y, Tsai T-C, Liu S-B (2006) A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: influence of promoter and sulfation treatment. Catal Today 116:111–120

    Article  CAS  Google Scholar 

  79. Hunger M (1996) Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl Magn Reson 6:1–29

    Article  CAS  Google Scholar 

  80. Xu M, Arnold A, Buchholz A, Wang W, Hunger M (2002) Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum. J Phys Chem B 106:12140–12143

    Article  CAS  Google Scholar 

  81. Zheng A, Zhang H, Lu X, Liu S-B, Deng F (2008) Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. J Phys Chem B 112:4496–4505

    Article  CAS  Google Scholar 

  82. Zheng A, Huang S-J, Chen W-H, Wu P-H, Zhang H, Lee H-K, L-Cd M, Deng F, Liu S-B (2008) 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. J Phys Chem A 112:7349–7356

    Article  CAS  Google Scholar 

  83. Zheng A, Zhang H, Chen L, Yue Y, Ye C, Deng F (2007) Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B 111:3085–3089

    Article  CAS  Google Scholar 

  84. Fang H, Zheng A, Chu Y, Deng F (2010) 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study. J Phys Chem C 114:12711–12718

    Article  CAS  Google Scholar 

  85. Zheng A, Deng F, Liu S-B (2014) Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Annu Rep NMR Spectrosc 81:47–108

    Article  CAS  Google Scholar 

  86. Zheng AM, Huang SJ, Wang Q, Zhang HL, Deng F, Liu SB (2013) Progress in development and application of solid-state NMR for solid acid catalysis. Chin J Catal 34:436–491

    Article  CAS  Google Scholar 

  87. Zheng AM, Liu SB, Deng F (2013) Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nucl Magn Reson 55–56:12–27

    Article  CAS  Google Scholar 

  88. Zheng A, Huang S-J, Liu S-B, Deng F (2011) Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys Chem Chem Phys 13:14889–14901

    Article  CAS  Google Scholar 

  89. Zhang XM, Zhao YP, Xu ST, Yang Y, Liu J, Wei YX, Yang QH (2014) Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nat Commun 5:3170

    Google Scholar 

  90. de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134:10089–10101

    Article  CAS  Google Scholar 

  91. Huang J, van Vegten N, Jiang Y, Hunger M, Baiker A (2010) Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew Chem Int Ed 49:7776–7781

    Article  CAS  Google Scholar 

  92. Feng ND, Zheng AM, Huang SJ, Zhang HL, Yu NY, Yang CY, Liu SB, Deng F (2010) Combined solid-state NMR and theoretical calculation studies of Bronsted acid properties in anhydrous 12-molybdophosphoric acid. J Phys Chem C 114:15464–15472

    Article  CAS  Google Scholar 

  93. Huang SJ, Yang CY, Zheng AM, Feng ND, Yu NY, Wu PH, Chang YC, Lin YC, Deng F, Liu SB (2011) New insights into Keggin-type 12-tungstophosphoric acid from 31P MAS NMR analysis of absorbed trimethylphosphine oxide and DFT calculations. Chem Asian J 6:137–148

    Article  CAS  Google Scholar 

  94. Filek U, Bressel A, Sulikowski B, Hunger M (2008) Structural stability and Brønsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40. J Phys Chem C 112:19470–19476

    Article  CAS  Google Scholar 

  95. Fang H, Zheng A, Li S, Xu J, Chen L, Deng F (2010) New insights into the effects of acid strength on the solid acid-catalyzed reaction: theoretical calculation study of olefinic hydrocarbon protonation reaction. J Phys Chem C 114:10254–10264

    Article  CAS  Google Scholar 

  96. Chu YY, Han B, Fang HJ, Zheng AM, Deng F (2012) Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: a theoretical calculation study. Microporous Mesoporous Mater 151:241–249

    Article  CAS  Google Scholar 

  97. Zheng AM, Liu SB, Deng F (2009) Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: insights from theoretical calculations. Microporous Mesoporous Mater 121:158–165

    Article  CAS  Google Scholar 

  98. Zhao Q, Chen WH, Huang SJ, Wu YC, Lee HK, Liu SB (2002) Discernment and quantification of internal and external acid sites on zeolites. J Phys Chem B 106:4462–4469

    Article  CAS  Google Scholar 

  99. Zhang WP, Ma D, Liu XC, Liu XM, Bao XH (1999) Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy. Chem Commun 1091–1092

    Google Scholar 

  100. Zheng AM, Chen L, Yang J, Zhang MJ, Su YC, Yue Y, Ye CH, Deng F (2005) Combined DFT theoretical calculation and solid-state NMR studies of Al substitution and acid sites in zeolite MCM-22. J Phys Chem B 109:24273–24279

    Article  CAS  Google Scholar 

  101. Peng LM, Chupas PJ, Grey CP (2004) Measuring Bronsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. J Am Chem Soc 126:12254–12255

    Article  CAS  Google Scholar 

  102. Brown SP (2012) Applications of high-resolution 1H solid-state NMR. Solid State Nucl Magn Reson 41:1–27

    Article  CAS  Google Scholar 

  103. Li SH, Zheng AM, Su YC, Fang HJ, Shen WL, Yu ZW, Chen L, Deng F (2010) Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys Chem Chem Phys 12:3895–3903

    Article  CAS  Google Scholar 

  104. Yu ZW, Li SH, Wang Q, Zheng AM, Jun X, Chen L, Deng F (2011) Bronsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 115:22320–22327

    Article  CAS  Google Scholar 

  105. Yu ZW, Wang Q, Chen L, Deng F (2012) Bronsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chin J Catal 33:129–139

    Article  CAS  Google Scholar 

  106. Wang Q, Hu B, Lafon O, Trebosc J, Deng F, Amoureux JP (2009) Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. J Magn Reson 200:251–260

    Article  CAS  Google Scholar 

  107. Peng LM, Grey CP (2008) Diphosphine probe molecules and solid-state NMR investigations of proximity between acidic sites in zeolite HY. Microporous Mesoporous Mater 116:277–283

    Article  CAS  Google Scholar 

  108. Haw JF, Song WG, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36:317–326

    Article  CAS  Google Scholar 

  109. Hunger M, Weitkamp J (2001) In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis. Angew Chem Int Ed 40:2954–2971

    Article  CAS  Google Scholar 

  110. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131:816–825

    Article  CAS  Google Scholar 

  111. Chu YY, Han B, Zheng AM, Deng F (2012) Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts: a theoretical calculation study. J Phys Chem C 116:12687–12695

    Article  CAS  Google Scholar 

  112. Zheng AM, Deng F, Liu SB (2011) Regioselectivity of carbonium ion transition states in zeolites. Catal Today 164:40–45

    Article  CAS  Google Scholar 

  113. Xu ST, Zheng AM, Wei YX, Chen JR, Li JZ, Chu YY, Zhang MZ, Wang QY, Zhou Y, Wang JB, Deng F, Liu ZM (2013) Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew Chem Int Ed 52:11564–11568

    Article  CAS  Google Scholar 

  114. Wang W, Seiler M, Ivanova II, Sternberg U, Weitkamp J, Hunger M (2002) Formation and decomposition of N, N, N-trimethylanilinium cations on zeolite H − Y investigated by in situ stopped-flow MAS NMR spectroscopy. J Am Chem Soc 124:7548–7554

    Article  CAS  Google Scholar 

  115. Wang X, Qi G, Xu J, Li B, Wang C, Deng F (2012) NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angew Chem Int Ed 51:3850–3853

    Article  CAS  Google Scholar 

  116. Gabrienko AA, Arzumanov SS, Toktarev AV, Freude D, Haase J, Stepanov AG (2011) H/D exchange and activation of C-1-n-C-4 alkanes on Ga-modified zeolite BEA studied with 1H magic angle spinning nuclear magnetic resonance in situ. J Phys Chem C 115:13877–13886

    Article  CAS  Google Scholar 

  117. Luzgin MV, Toktarev AV, Parmon VN, Stepanov AG (2013) Coaromatization of methane with propane on Mo-containing zeolite H-BEA: a solid-state NMR and GC-MS study. J Phys Chem C 117:22867–22873

    Article  CAS  Google Scholar 

  118. Gabrienko AA, Arzumanov SS, Freude D, Stepanov AG (2010) Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in situ. J Phys Chem C 114:12681–12688

    Article  CAS  Google Scholar 

  119. Wang X, Dai WL, Wu GJ, Li LD, Guan NJ, Hunger M (2014) Verifying the dominant catalytic cycle of the methanol-to-hydrocarbon conversion over SAPO-41. Catal Sci Technol 4:688–696

    Article  CAS  Google Scholar 

  120. Dai WL, Wang X, Wu GJ, Guan NJ, Hunger M, Li LD (2011) Methanol-to-Olefin conversion on silicoaluminophosphate catalysts: effect of Bronsted acid sites and framework structures. ACS Catal 1:292–299

    Article  CAS  Google Scholar 

  121. Marthala VRR, Rabl S, Huang J, Rezai SAS, Thomas B, Hunger M (2008) In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. J Catal 257:134–141

    Article  CAS  Google Scholar 

  122. Li JZ, Wei YX, Chen JR, Tian P, Su X, Xu ST, Qi Y, Wang QY, Zhou Y, He YL, Liu ZM (2012) Observation of heptamethylbenzenium cation over SAPO-Type molecular sieve DNL-6 under real MTO conversion conditions. J Am Chem Soc 134:836–839

    Article  CAS  Google Scholar 

  123. Haw JF, Richardson BR, Oshiro IS, Lazo ND, Speed JA (1989) Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 111:2052–2058

    Article  CAS  Google Scholar 

  124. Xu T, Haw JF (1994) NMR observation of indanyl carbenium ion intermediates in the reactions of hydrocarbons on acidic zeolites. J Am Chem Soc 116:10188–10195

    Article  CAS  Google Scholar 

  125. Xu T, Barich DH, Goguen PW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J Am Chem Soc 120:4025–4026

    Article  CAS  Google Scholar 

  126. Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, Liu Z (2012) Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J Am Chem Soc 134:836–839

    Article  CAS  Google Scholar 

  127. Xu S, Zhang W, Liu X, Han X, Bao X (2009) Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages. J Am Chem Soc 131:13722–13727

    Article  CAS  Google Scholar 

  128. de Moor P, Beelen TPM, van Santen RA (1999) In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI. J Phys Chem B 103:1639–1650

    Article  Google Scholar 

  129. Verhoef MJ, Kooyman PJ, van der Waal JC, Rigutto MS, Peters JA, van Bekkum H (2001) Partial transformation of MCM-41 material into zeolites: formation of nanosized MFI type crystallites. Chem Mater 13:683–687

    Article  CAS  Google Scholar 

  130. Alfredsson V, Anderson MW (1996) Structure of MCM-48 revealed by transmission electron microscopy. Chem Mater 8:1141–1146

    Article  CAS  Google Scholar 

  131. Huang YN, Demko BA, Kirby CW (2003) Investigation of the evolution of intermediate phases of AIPO(4)-18 molecular sieve synthesis. Chem Mater 15:2437–2444

    Article  CAS  Google Scholar 

  132. Wu Q, Wang X, Qi G, Guo Q, Pan S, Meng X, Xu J, Deng F, Fan F, Feng Z, Li C, Maurer S, Müller U, Xiao F-S (2014) Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J Am Chem Soc 136:4019–4025

    Article  CAS  Google Scholar 

  133. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao F-S (2013) Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed 52:9172–9175

    Article  CAS  Google Scholar 

  134. Zhang L, Bates J, Chen DH, Nie HY, Huang YN (2011) Investigations of formation of molecular sieve SAPO-34. J Phys Chem C 115:22309–22319

    Article  CAS  Google Scholar 

  135. Greer H, Wheatley PS, Ashbrook SE, Morris RE, Zhou W (2009) Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite. J Am Chem Soc 131:17986–17992

    Article  CAS  Google Scholar 

  136. Van Grieken R, Sotelo JL, Menendez JM, Melero JA (2000) Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous Mesoporous Mater 39:135–147

    Article  Google Scholar 

  137. Chen BH, Huang YN (2006) 17O solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion. J Am Chem Soc 128:6437–6446

    Article  CAS  Google Scholar 

  138. Xu J, Chen L, Zeng DL, Yang J, Zhang MJ, Ye CH, Deng F (2007) Crystallization of AlPO4-5 aluminophosphate molecular sieve prepared in fluoride medium: a multinuclear solid-state NMR study. J Phys Chem B 111:7105–7113

    Google Scholar 

  139. Shen WL, Li SH, Xu J, Zhang HL, Hu W, Zhou D, Zhang JA, Yu JH, Xu WJ, Xu Y, Deng F (2010) A novel phase transformation phenomenon in mesostructured aluminophosphate. J Phys Chem C 114:7076–7084

    Article  CAS  Google Scholar 

  140. Tosner Z, Vosegaard T, Kehlet C, Khaneja N, Glaser SJ, Nielsen NC (2009) Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. J Magn Reson 197:120–134

    Article  CAS  Google Scholar 

  141. Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Article  CAS  Google Scholar 

  142. Smith ME (2001) Recent progress in solid-state NMR of low-gamma nuclei. Annu Rep NMR Spectrosc 43:121–175

    Article  CAS  Google Scholar 

  143. Brinkmann A, Levitt MH (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115:357–384

    Article  CAS  Google Scholar 

  144. Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321:205–215

    Article  CAS  Google Scholar 

  145. Hohwy M, Jakobsen HJ, Eden M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694

    Article  CAS  Google Scholar 

  146. Lesage A, Sakellariou D, Hediger S, Elena B, Charmont P, Steuernagel S, Emsley L (2003) Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson 163:105–113

    Article  CAS  Google Scholar 

  147. Xu J, Zhu P, Gan Z, Sahar N, Tecklenburg M, Morris MD, Kohn DH, Ramamoorthy A (2010) Natural-abundance 43Ca solid-state NMR spectroscopy of bone. J Am Chem Soc 132:11504–11509

    Article  CAS  Google Scholar 

  148. Wu G, Gan Z, Kwan ICM, Fettinger JC, Davis JT (2011) High-resolution 39 K NMR spectroscopy of bio-organic solids. J Am Chem Soc 133:19570–19573

    Article  CAS  Google Scholar 

  149. Laurencin D, Wong A, Hanna JV, Dupree R, Smith ME (2008) A high-resolution 43Ca solid-state NMR study of the calcium sites of hydroxyapatite. J Am Chem Soc 130:2412–2413

    Article  CAS  Google Scholar 

  150. Zheng H, Ma D, Bao X, Hu JZ, Kwak JH, Wang Y, Peden CHF (2008) Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. J Am Chem Soc 130:3722–3723

    Article  CAS  Google Scholar 

  151. Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211

    Article  CAS  Google Scholar 

  152. Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J, Bryant J, Elena B, Kreischer KE, Temkin RJ, Griffin RG (2003) Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source. J Magn Reson 160:85–90

    Article  CAS  Google Scholar 

  153. Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L (2011) Fast characterization of functionalized silica materials by 29Si surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133:2104–2107

    Article  CAS  Google Scholar 

  154. Rossini AJ, Zagdoun A, Lelli M, Gajan D, Rascon F, Rosay M, Maas WE, Coperet C, Lesage A, Emsley L (2012) One hundred fold overall sensitivity enhancements for 29Si NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chem Sci 3:108–115

    Article  CAS  Google Scholar 

  155. Zagdoun A, Casano G, Ouari O, Lapadula G, Rossini AJ, Lelli M, Baffert M, Gajan D, Veyre L, Maas WE, Rosay M, Weber RT, Thieuleux C, Coperet C, Lesage A, Tordo P, Emsley L (2012) A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials. J Am Chem Soc 134:2284–2291

    Article  CAS  Google Scholar 

  156. Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S, Ouari O, Tordo P, Rosay M, Maas WE, Coperet C, Farrusseng D, Emsley L, Lesage A (2012) Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. Angew Chem Int Ed 51:123–127

    Article  CAS  Google Scholar 

  157. Lafon O, Rosay M, Aussenac F, Lu X, Trebosc J, Cristini O, Kinowski C, Touati N, Vezin H, Amoureux J-P (2011) Beyond the silica surface by direct 29Si dynamic nuclear polarization. Angew Chem Int Ed 50:8367–8370

    Article  CAS  Google Scholar 

  158. Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113

    Article  CAS  Google Scholar 

  159. Frydman L, Scherf T, Lupulescu A (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci U S A 99:15858–15862

    Article  CAS  Google Scholar 

  160. Jiang B, Jiang XW, Xiao N, Zhang X, Jiang L, Mao XA, Liu ML (2010) Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data. J Magn Reson 204:165–168

    Article  CAS  Google Scholar 

  161. Jiang B, Luo F, Ding Y, Sun P, Zhang X, Jiang L, Li C, X-a M, Yang D, Tang C, Liu M (2013) NASR: an effective approach for simultaneous noise and artifact suppression in NMR spectroscopy. Anal Chem 85:2523–2528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, S., Deng, F. (2016). Solid-State NMR Studies of Zeolites. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_7

Download citation

Publish with us

Policies and ethics