Skip to main content

Structure Determination of Zeolites by Electron Crystallography

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Electron crystallography has shown to be an important method for structural characterization of zeolites. Electron crystallography is a method which comprises several important advantages over other characterization methods. With the electron as a probe, single-crystal diffraction data can be obtained from crystals million times smaller than what is possible with X-ray methods today. This is an important advantage especially for zeolites since they are often obtained as very small crystals. Electrons also enable the formation of images of a specimen with the atomic resolution. This is of essential importance when studying materials that are very complex or contain disorder. Over the years electron crystallography has been used for structure determination of zeolites. Through methodological advances during the last few years, it has evolved into an even more powerful method with crucial importance for structure determination. This chapter gives an introduction to electron crystallography and various electron crystallographic methods and their combinations with other methods used for structure determination of zeolite materials. Different routes for structure determination are described through examples from recently reported structure determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su J, Wang Y, Wang Z, Lin J (2009) PKU-9: an aluminogermanate with a new three-dimensional zeolite framework constructed from CGS layers and spiro-5 units. J Am Chem Soc 131(17):6080–6081

    Article  CAS  Google Scholar 

  2. Tang L, Shi L, Bonneau C, Sun J, Yue H, Ojuva A, Lee B-L, Kritikos M, Bell RG, Bacsik Z, Mink J, Zou X (2008) A zeolite family with chiral and achiral structures built from the same building layer. Nat Mater 7(5):381–385

    Article  CAS  Google Scholar 

  3. Xu Y, Li Y, Han Y, Song X, Yu J (2013) A gallogermanate zeolite with eleven-membered-ring channels. Angew Chem Int Ed 52(21):5501–5503

    Article  CAS  Google Scholar 

  4. Han Y, Li Y, Yu J, Xu R (2011) A gallogermanate zeolite constructed exclusively by three-ring building units. Angew Chem Int Ed 50(13):3003–3005

    Article  CAS  Google Scholar 

  5. Song X, Li Y, Gan L, Wang Z, Yu J, Xu R (2009) Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. Angew Chem Int Ed 48(2):314–317

    Article  CAS  Google Scholar 

  6. Shao L, Li Y, Yu J, Xu R (2012) Divalent-metal-stabilized aluminophosphates exhibiting a new zeolite framework topology. Inorg Chem 51(1):225–229

    Article  CAS  Google Scholar 

  7. Liu Z, Song X, Li J, Li Y, Yu J, Xu R (2012) |(C4NH12)4|[M4Al12P16O64] (M = Co, Zn): new heteroatom-containing aluminophosphate molecular sieves with two intersecting 8-ring channels. Inorg Chem 51(3):1969–1974

    Article  CAS  Google Scholar 

  8. Armstrong JA, Weller MT (2010) Beryllosilicate frameworks and zeolites. J Am Chem Soc 132(44):15679–15686

    Article  CAS  Google Scholar 

  9. Baerlocher C, Weber T, McCusker LB, Palatinus L, Zones SI (2011) Unraveling the perplexing structure of the zeolite SSZ-57. Science 333(6046):1134–1137

    Article  CAS  Google Scholar 

  10. Grosse-Kunstleve RW, McCusker LB, Baerlocher C (1997) Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites. J Appl Crystallogr 30:985–995

    Article  CAS  Google Scholar 

  11. Altomare A, Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Rizzi R (1999) EXPO: a program for full powder pattern decomposition and crystal structure solution. J Appl Crystallogr 32:339–340

    Article  CAS  Google Scholar 

  12. Baerlocher C, McCusker LB, Palatinus L (2007) Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z Krist 222(2):47–53

    Article  CAS  Google Scholar 

  13. Cantin A, Corma A, Leiva S, Rey F, Rius J, Valencia S (2005) Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J Am Chem Soc 127(33):11560–11561

    Article  CAS  Google Scholar 

  14. Corma A, Diaz-Cabanas MJ, Luis Jorda J, Martinez C, Moliner M (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18-and 10-member rings. Nature 443(7113):842–845

    Article  CAS  Google Scholar 

  15. Corma A, Diaz-Cabanas MJ, Jorda JL, Rey F, Sastre G, Strohmaier KG (2008) A zeolitic structure (ITQ-34) with connected 9-and 10-ring channels obtained with phosphonium cations as structure directing agents. J Am Chem Soc 130(49):16482–16483

    Article  CAS  Google Scholar 

  16. Jiang J, Jorda JL, Diaz-Cabanas MJ, Yu J, Corma A (2010) The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density. Angew Chem Int Ed 49(29):4986–4988

    Article  CAS  Google Scholar 

  17. Hernandez-Rodriguez M, Jorda JL, Rey F, Corma A (2012) Synthesis and structure determination of a new microporous zeolite with large cavities connected by small pores. J Am Chem Soc 134(32):13232–13235

    Article  CAS  Google Scholar 

  18. Xie D, McCusker LB, Baerlocher C (2011) Structure of the borosilicate zeolite catalyst SSZ-82 solved using 2D-XPD charge flipping. J Am Chem Soc 133(50):20604–20610

    Article  CAS  Google Scholar 

  19. Elomari S, Burton AW, Ong K, Pradhan AR, Chan IY (2007) Synthesis and structure solution of zeolite SSZ-65. Chem Mater 19(23):5485–5492

    Article  CAS  Google Scholar 

  20. McCusker LB, Baerlocher C, Burton AW, Zones SI (2011) A re-examination of the structure of the germanosilicate zeolite SSZ-77. Solid State Sci 13(4):800–805

    Article  CAS  Google Scholar 

  21. Xie D, McCusker LB, Baerlocher C, Zones SI, Wan W, Zou XD (2013) SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. J Am Chem Soc 135(28):10519–10524

    Article  CAS  Google Scholar 

  22. Elomari S, Burton A, Medrud RC, Grosse-Kunstleve R (2009) The synthesis, characterization, and structure solution of SSZ-56: an extreme example of isomer specificity in the structure direction of zeolites. Microporous Mesoporous Mater 118(1–3):325–333

    Article  CAS  Google Scholar 

  23. Lorgouiux Y, Dodin M, Paillaud J-L, Caullet P, Michelin L, Josien L, Ersen O, Bats N (2009) IM-16: a new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. J Solid State Chem 182(3):622–629

    Article  CAS  Google Scholar 

  24. Dodin M, Paillaud J-L, Lorgouilloux Y, Caullett P, Elkaim E, Bats N (2010) A zeolitic material with a three-dimensional pore system formed by straight 12-and 10-ring channels synthesized with an imidazolium derivative as structure-directing agent. J Am Chem Soc 132(30):10221–10223

    Article  CAS  Google Scholar 

  25. McCusker LB, Baerlocher C, Wilson ST, Broach RW (2009) Synthesis and structural characterization of the aluminosilicate LZ-135, a zeolite related to ZSM-10. J Phys Chem C 113(22):9838–9844

    Article  CAS  Google Scholar 

  26. Han Z, Picone AL, Slawin AMZ, Seymour VR, Ashbrook SE, Zhou W, Thompson SP, Parker JE, Wright PA (2010) Novel large-pore aluminophosphate molecular sieve STA-15 prepared using the tetrapropylammonium cation as a structure directing agent. Chem Mater 22(2):338–346

    Article  CAS  Google Scholar 

  27. Dorset DL, Kennedy GJ (2005) Crystal structure of MCM-70: a microporous material with high framework density. J Phys Chem B 109(29):13891–13898

    Article  CAS  Google Scholar 

  28. Xie D, McCusker LB, Baerlocher C, Gibson L, Burton AW, Hwang S-J (2009) Optimized synthesis and structural characterization of the borosilicate MCM-70. J Phys Chem C 113(22):9845–9850

    Article  CAS  Google Scholar 

  29. Broach RW, Kirchner RM (2011) Structures of the K+ and NH4 + forms of Linde J. Microporous Mesoporous Mater 143(2–3):398–400

    Article  CAS  Google Scholar 

  30. Verheyen E, Joos L, Van Havenbergh K, Breynaert E, Kasian N, Gobechiya E, Houthoofd K, Martineau C, Hinterstein M, Taulelle F, Van Speybroeck V, Waroquier M, Bals S, Van Tendeloo G, Kirschhock CEA, Martens JA (2012) Design of zeolite by inverse sigma transformation. Nat Mater 11(12):1059–1064

    CAS  Google Scholar 

  31. Broach RW, Greenlay N, Jakubczak P, Knight LM, Miller SR, Mowat JPS, Stanczyk J, Lewis GJ (2014) New ABC-6 net molecular sieves ZnAPO-57 and ZnAPO-59: framework charge density-induced transition from two- to three-dimensional porosity. Microporous Mesoporous Mater 189:49–63

    Article  CAS  Google Scholar 

  32. Zanardi S, Millini R, Frigerio F, Belloni A, Cruciani G, Bellussi G, Carati A, Rizzo C, Montanari E (2011) ERS-18: a new member of the NON-EUO-NES zeolite family. Microporous Mesoporous Mater 143(1):6–13

    Article  CAS  Google Scholar 

  33. Inge AK, Fahlquist H, Willhammar T, Huang Y, McCusker LB, Zou XD (2013) Solving complex open-framework structures from X-ray powder diffraction by direct-space methods using composite building units. J Appl Crystallogr 46:1094–1104

    Article  CAS  Google Scholar 

  34. Gramm F, Baerlocher C, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Liu Z, Ohsuna T, Terasaki O (2006) Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444(7115):79–81

    Article  CAS  Google Scholar 

  35. Baerlocher C, Gramm F, Massueger L, McCusker LB, He Z, Hovmoeller S, Zou XD (2007) Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315(5815):1113–1116

    Article  CAS  Google Scholar 

  36. Baerlocher C, Xie D, McCusker LB, Hwang S-J, Chan IY, Ong K, Burton AW, Zones SI (2008) Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat Mater 7(8):631–635

    Article  CAS  Google Scholar 

  37. Dorset DL, Strohmaier KG, Kliewer CE, Corma A, Diaz-Cabanas MJ, Rey F, Gilmore CJ (2008) Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater 20(16):5325–5331

    Article  CAS  Google Scholar 

  38. Sun J, Bonneau C, Cantin A, Corma A, Diaz-Cabanas MJ, Moliner M, Zhang D, Li M, Zou XD (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458(7242):1154–1157

    Article  CAS  Google Scholar 

  39. Moliner M, Willhammar T, Wan W, Gonzalez J, Rey F, Jorda JL, Zou XD, Corma A (2012) Synthesis design and structure of a multipore zeolite with interconnected 12-and 10-MR channels. J Am Chem Soc 134(14):6473–6478

    Article  CAS  Google Scholar 

  40. Willhammar T, Sun J, Wan W, Oleynikov P, Zhang D, Zou XD, Moliner M, Gonzalez J, Martinez C, Rey F, Corma A (2012) Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nat Chem 4(3):188–194

    Article  CAS  Google Scholar 

  41. Corma A, Diaz-Cabanas MJ, Jiang J, Afeworki M, Dorset DL, Soled SL, Strohmaier KG (2010) Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proc Natl Acad Sci U S A 107(32):13997–14002

    Article  CAS  Google Scholar 

  42. Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E, Diaz-Cabanas MJ, Kolb U, Corma A (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333(6046):1131–1134

    Article  CAS  Google Scholar 

  43. Martinez-Franco R, Moliner M, Yun Y, Sun J, Wan W, Zou XD, Corma A (2013) Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc Natl Acad Sci U S A 110(10):3749–3754

    Article  CAS  Google Scholar 

  44. Yun Y, Hernández M, Wan W, Zou XD, Jordá JL, Cantín A, Rey F, Corma A (2015) The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chem Commun. doi:10.1039/C4CC10317C

    Google Scholar 

  45. Jiang J, Yun Y, Zou XD, Jordá JL, Corma A (2014) ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chem Sci 6:480–485

    Article  CAS  Google Scholar 

  46. Liang J, Su J, Wang Y, Chen Y, Zou XD, Liao F, Lin J, Sun J (2014) A 3D 12-ring zeolite with ordered 4-ring vacancies occupied by (H2O)2 dimers. Chem Eur J 49:16097–16101

    Article  CAS  Google Scholar 

  47. Hua W, Chen H, Yu Z-B, Zou XD, Lin J, Sun J (2014) A germanosilicate structure with 11x11x12-ring channels solved by electron crystallography. Angew Chem Int Ed 53(23):5868–5871

    Article  CAS  Google Scholar 

  48. Willhammar T, Burton AW, Yun Y, Sun J, Afeworki M, Strohmaier KG, Vroman H, Zou XD (2014) EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. J Am Chem Soc 136:13570–13573

    Article  CAS  Google Scholar 

  49. Yu Z-B, Han Y, Zhao L, Huang S, Zheng Q-Y, Lin S, Cordova A, Zou XD, Sun J (2012) Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction. Chem Mater 24(19):3701–3706

    Article  CAS  Google Scholar 

  50. Pan M (1996) High resolution electron microscopy of zeolites. Micron 27(3–4):219–238

    Article  CAS  Google Scholar 

  51. Diaz I, Mayoral A (2011) TEM studies of zeolites and ordered mesoporous materials. Micron 42(5):512–527

    Article  CAS  Google Scholar 

  52. Anderson MW, Ohsuna T, Sakamoto Y, Liu Z, Carlsson A, Terasaki O (2004) Modern microscopy methods for the structural study of porous materials. Chem Commun 8:907–916

    Article  CAS  Google Scholar 

  53. Sun J, Zou XD (2010) Structure determination of zeolites and ordered mesoporous materials by electron crystallography. Dalton Trans 39(36):8355–8362

    Article  CAS  Google Scholar 

  54. Liu Z, Fujita N, Miyasaka K, Han L, Stevens SM, Suga M, Asahina S, Slater B, Xiao C, Sakamoto Y, Anderson MW, Ryoo R, Terasaki O (2013) A review of fine structures of nanoporous materials as evidenced by microscopic methods. Microscopy 62(1):109–146

    Article  CAS  Google Scholar 

  55. Willhammar T, Yun Y, Zou XD (2014) Structural determination of ordered porous solids by electron crystallography. Adv Funct Mater 24(2):182–199

    Article  CAS  Google Scholar 

  56. Vincent R, Midgley P (1994) Double conical beam-rocking system for measurement of integrated electron-diffraction intensities. Ultramicroscopy 53(3):271–282

    Article  CAS  Google Scholar 

  57. Kolb U, Gorelik T, Kuebel C, Otten MT, Hubert D (2007) Towards automated diffraction tomography: Part I - data acquisition. Ultramicroscopy 107(6–7):507–513

    Article  CAS  Google Scholar 

  58. Kolb U, Gorelik T, Otten MT (2008) Towards automated diffraction tomography. Part II – cell parameter determination. Ultramicroscopy 108(8):763–772

    Article  CAS  Google Scholar 

  59. Zhang D, Oleynikov P, Hovmöller S, Zou XD (2010) Collecting 3D electron diffraction data by the rotation method. Z Krist 225(2–3):94–102

    CAS  Google Scholar 

  60. Wan W, Sun J, Su J, Hovmöller S, Zou XD (2013) Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J Appl Crystallogr 46:1863–1873

    Article  CAS  Google Scholar 

  61. Hovmöller S (1992) CRISP – crystallographic image-processing on a personal-computer. Ultramicroscopy 41(1–3):121–135

    Article  Google Scholar 

  62. Zou XD, Sundberg M, Larine M, Hovmöller S (1996) Structure projection retrieval by image processing of HREM images taken under non-optimum defocus conditions. Ultramicroscopy 62(1–2):103–121

    Article  CAS  Google Scholar 

  63. Wan W, Hovmoeller S, Zou XD (2012) Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy 115:50–60

    Article  CAS  Google Scholar 

  64. Zou XD, Hovmöller S, Oleynikov P (2011) Electron crystallography – electron microscopy and electron diffraction. Oxford University Press, Oxford

    Book  Google Scholar 

  65. Vainshtein BK (1964) Structure analysis by electron diffraction. Pergamon Press, Oxford

    Google Scholar 

  66. Zou XD, Sukharev Y, Hovmöller S (1993) Eld – a computer-program system for extracting intensities from electron-diffraction patterns. Ultramicroscopy 49(1–4):147–158

    Article  CAS  Google Scholar 

  67. Weirich TE, Zou XD, Ramlau R, Simon A, Cascarano GL, Giacovazzo C, Hovmöller S (2000) Structures of nanometre-size crystals determined from selected-area electron diffraction data. Acta Crystallogr Sect A 56:29–35

    Article  CAS  Google Scholar 

  68. Zhang D, Gruner D, Oleynikov P, Wan W, Hovmöller S, Zou XD (2010) Precession electron diffraction using a digital sampling method. Ultramicroscopy 111(1):47–55

    Article  CAS  Google Scholar 

  69. Oleynikov P, Hovmöller S, Zou XD (2007) Precession electron diffraction: observed and calculated intensities. Ultramicroscopy 107(6–7):523–533

    Article  CAS  Google Scholar 

  70. Gemmi M, Zou XD, Hovmöller S, Migliori A, Vennstrom M, Andersson Y (2003) Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Crystallogr Sect A 59:117–126

    Article  CAS  Google Scholar 

  71. Dorset DL, Gilmore CJ, Jorda JL, Nicolopoulos S (2007) Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy 107(6–7):462–473

    Article  CAS  Google Scholar 

  72. Weirich TE, Ramlau R, Simon A, Hovmöller S, Zou XD (1996) A crystal structure determined with 0.02 angstrom accuracy by electron microscopy. Nature 382(6587):144–146

    Article  CAS  Google Scholar 

  73. Mayoral A, Carey T, Anderson PA, Lubk A, Diaz I (2011) Atomic resolution analysis of silver ion-exchanged zeolite A. Angew Chem Int Ed 50(47):11230–11233

    Article  CAS  Google Scholar 

  74. Mayoral A, Carey T, Anderson PA, Diaz I (2013) Atomic resolution analysis of porous solids: a detailed study of silver ion-exchanged zeolite A. Microporous Mesoporous Mater 166:117–122

    Article  CAS  Google Scholar 

  75. Mayoral A, Coronas J, Casado C, Tellez C, Diaz I (2013) Atomic resolution analysis of microporous titanosilicate ETS-10 through aberration corrected STEM imaging. ChemCatChem 5(9):2595–2598

    Article  CAS  Google Scholar 

  76. Ortalan V, Uzun A, Gates BC, Browning ND (2010) Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat Nanotechnol 5(7):506–510

    Article  CAS  Google Scholar 

  77. Zou XD, Mo ZM, Hovmöller S, Li XZ, Kuo KH (2003) Three-dimensional reconstruction of the nu-AlCrFe phase by electron crystallography. Acta Crystallogr Sect A 59:526–539

    Article  CAS  Google Scholar 

  78. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  79. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Mallamo M, Mazzone A, Polidori G, Spagna R (2012) SIR2011: a new package for crystal structure determination and refinement. J Appl Crystallogr 45:357–361

    Article  CAS  Google Scholar 

  80. Smeets S, McCusker LB, Baerlocher C, Mugnaioli E, Kolb U (2013) Using FOCUS to solve zeolite structures from three-dimensional electron diffraction data. J Appl Crystallogr 46:1017–1023

    Article  CAS  Google Scholar 

  81. Oszlanyi G, Suto A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr Sect A 60:134–141

    Article  CAS  Google Scholar 

  82. Oszlanyi G, Suto A (2005) Ab initio structure solution by charge flipping. II. Use of weak reflections. Acta Crystallogr Sect A 61:147–152

    Article  CAS  Google Scholar 

  83. Palatinus L, Chapuis G (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790

    Article  CAS  Google Scholar 

  84. Xie D, Baerlocher C, McCusker LB (2008) Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution. J Appl Crystallogr 41:1115–1121

    Article  CAS  Google Scholar 

  85. Nicolopoulos S, Gonzalezcalbet J, Valletregi M, Corma A, Corell C, Guil J, Perezpariente J (1995) Direct phasing in electron crystallography – Ab-initio determination of a new Mcm-22 zeolite structure. J Am Chem Soc 117(35):8947–8956

    Article  CAS  Google Scholar 

  86. Wagner P, Terasaki O, Ritsch S, Nery JG, Zones SI, Davis ME, Hiraga K (1999) Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution. J Phys Chem B 103(39):8245–8250

    Article  CAS  Google Scholar 

  87. Dorset DL (2006) The crystal structure of ZSM-10, a powder X-ray and electron diffraction study. Z Krist 221(4):260–265

    CAS  Google Scholar 

  88. Gilmore CJ, Bricogne G (1997) MICE computer program. In: Carter CW, Sweet RM (eds) Macromolecular crystallography, Pt B, vol 277. Academic, San Diego, pp 65–78

    Chapter  Google Scholar 

  89. Guo P, Liu L, Yun Y, Su J, Wan W, Gies H, Zhang H, Xiao F-S, Zou XD (2014) Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction. Dalton Trans 43:10593–10601

    Article  CAS  Google Scholar 

  90. Treacy M, Newsam J (1988) 2 new 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332(6161):249–251

    Article  CAS  Google Scholar 

  91. Newsam J, Treacy M, Koetsier W, Degruyter C (1988) Structural characterization of zeolite-beta. Proc R Soc Lond Ser Math Phys Eng Sci 420(1859):375–405

    Article  CAS  Google Scholar 

  92. Higgins J, Lapierre R, Schlenker J, Rohrman A, Wood J, Kerr G, Rohrbaugh W (1988) The framework topology of zeolite-beta. Zeolites 8(6):446–452

    Article  CAS  Google Scholar 

  93. Lobo R, Pan M, Chan I, Li H, Medrud R, Zones S, Crozier P, Davis M (1993) Ssz-26 and Ssz-33 – 2 molecular-sieves with intersecting 10-ring and 12-ring pores. Science 262(5139):1543–1546

    Article  CAS  Google Scholar 

  94. Lobo R, Pan M, Chan I, Medrud R, Zones S, Crozier P, Davis M (1994) Physicochemical characterization of zeolites Ssz-26 and Ssz-33. J Phys Chem 98(46):12040–12052

    Article  CAS  Google Scholar 

  95. Lobo RF, Tsapatsis M, Freyhardt CC, Chan I, Chen CY, Zones SI, Davis ME (1997) A model for the structure of the large-pore zeolite SSZ-31. J Am Chem Soc 119(16):3732–3744

    Article  CAS  Google Scholar 

  96. van Koningsveld H, Lobo RF (2003) Disorder in zeolite SSZ-31 described on the basis of one-dimensional building units. J Phys Chem B 107(40):10983–10989

    Article  CAS  Google Scholar 

  97. Leonowicz M, Lawton J, Lawton S, Rubin M (1994) Mcm-22 – a molecular-sieve with 2 independent multidimensional channel systems. Science 264(5167):1910–1913

    Article  CAS  Google Scholar 

  98. Ruan JF, Wu P, Slater B, Terasaki O (2005) Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angew Chem Int Ed 44(41):6719–6723

    Article  CAS  Google Scholar 

  99. Anderson M, Terasaki O, Ohsuna T, Philippou A, Mackay S, Ferreira A, Rocha J, Lidin S (1994) Structure of the microporous titanosilicate Ets-10. Nature 367(6461):347–351

    Article  CAS  Google Scholar 

  100. Anderson M, Terasaki O, Ohsuna T, Malley P, Philippou A, Mackay S, Ferreira A, Rocha J, Lidin S (1995) Microporous titanosilicate Ets-10 – a structural survey. Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 71(5):813–841

    CAS  Google Scholar 

  101. Lobo RF, Tsapatsis M, Freyhardt CC, Khodabandeh S, Wagner P, Chen CY, Balkus KJ, Zones SI, Davis ME (1997) Characterization of the extra-large-pore zeolite UTD-1. J Am Chem Soc 119(36):8474–8484

    Article  CAS  Google Scholar 

  102. Corma A, Diaz-Cabanas MJ, Rey F, Nicolooulas S, Boulahya K (2004) ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem Commun 12:1356–1357

    Article  CAS  Google Scholar 

  103. Willhammar T, Zou XD (2013) Stacking disorders in zeolites and open-frameworks – structure elucidation and analysis by electron crystallography and X-ray diffraction. Z Krist 228(1):11–27

    CAS  Google Scholar 

  104. Conradsson T, Dadachov MS, Zou XD (2000) Synthesis and structure of (Me3N)6[Ge32O64] · (H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous Mesoporous Mater 41(1–3):183–191

    Article  CAS  Google Scholar 

  105. Liu Z, Ohsuna T, Terasaki O, Camblor MA, Diaz-Cabanas MJ, Hiraga K (2001) The first zeolite with three-dimensional intersecting straight-channel system of 12-membered rings. J Am Chem Soc 123(22):5370–5371

    Article  CAS  Google Scholar 

  106. Corma A, Navarro MT, Rey F, Rius J, Valencia S (2001) Pure polymorph C of zeolite beta synthesized by using framework isomorphous substitution as a structure-directing mechanism. Angew Chem Int Ed 40(12):2277–2280

    Article  CAS  Google Scholar 

  107. Corma A, Rey F, Valencia S, Jordá JL, Rius J (2003) A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat Mater 2(7):493–497

    Article  CAS  Google Scholar 

  108. Zou XD, Hovmöller A, Hovmöller S (2004) TRICE – a program for reconstructing 3D reciprocal space and determining unit-cell parameters. Ultramicroscopy 98(2–4):187–193

    Article  CAS  Google Scholar 

  109. Sun J, He Z, Hovmöller S, Zou XD, Gramm F, Baerlocher C, McCusker LB (2010) Structure determination of the zeolite IM-5 using electron crystallography. Z Krist 225(2–3):77–85

    CAS  Google Scholar 

  110. Ohsuna T, Liu Z, Terasaki O, Hiraga K, Camblor MA (2002) Framework determination of a polytype of zeolite beta by using electron crystallography. J Phys Chem B 106(22):5673–5678

    Article  CAS  Google Scholar 

  111. Corma A, Moliner M, Cantin A, Diaz-Cabanas MJ, Lorda JL, Zhang D, Sun J, Jansson K, Hovmöller S, Zou XD (2008) Synthesis and structure of polymorph B of zeolite beta. Chem Mater 20(9):3218–3223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA), and the Knut and Alice Wallenberg Foundation through a grant for purchasing the TEM and the project grant 3DEM-NATUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willhammar, T., Zou, X. (2016). Structure Determination of Zeolites by Electron Crystallography. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_5

Download citation

Publish with us

Policies and ethics