Skip to main content

Abstract

Mesoporous materials constructed with microporous zeolitic frameworks (i.e., mesoporous zeolites) are of great interest owing to the very short diffusion path lengths across thin zeolite layers and the presence of large external surfaces containing strong Brønsted acid sites. These characteristics of mesoporous zeolites are highly advantageous for a wide range of applications, particularly in heterogeneous catalysis. The mesoporous materials show unprecedentedly high catalytic performances (e.g., high catalytic conversion and catalytic longevity) as zeolites in various petrochemical reactions and fine-chemical organic reactions and especially in reactions involving bulky molecules. In this chapter, we describe the various methods currently available for the synthesis of mesoporous zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use. Wiley, New York

    Google Scholar 

  2. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2419

    Article  CAS  Google Scholar 

  3. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1–2):298–312

    Article  CAS  Google Scholar 

  4. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37(11):2530–2542

    Article  CAS  Google Scholar 

  5. Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2(6):610–626

    Article  CAS  Google Scholar 

  6. Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) A molecular-sieve with 18-membered rings. Nature 331(6158):698–699

    Article  CAS  Google Scholar 

  7. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821

    Article  CAS  Google Scholar 

  8. Corma A, Diaz-Cabanas MJ, Jorda JL, Martinez C, Moliner M (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18-and 10-member rings. Nature 443(7113):842–845

    Article  CAS  Google Scholar 

  9. Freyhardt CC, Tsapatsis M, Lobo RF, Balkus KJ, Davis ME (1996) A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 381(6580):295–298

    Article  CAS  Google Scholar 

  10. Strohmaier KG, Vaughan DEW (2003) Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34. J Am Chem Soc 125(51):16035–16039

    Article  CAS  Google Scholar 

  11. Corma A, Diaz-Cabanas MJ, Rey F, Nicolooulas S, Boulahya K (2004) ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem Commun 12:1356–1357

    Article  CAS  Google Scholar 

  12. Corma A, Diaz-Cabanas M, Martinez-Triguero J, Rey F, Rius J (2002) A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 418(6897):514–517

    Article  CAS  Google Scholar 

  13. Jiang JX, Yu JH, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49(18):3120–3145

    Article  CAS  Google Scholar 

  14. Blasco T, Corma A, Diaz-Cabanas MJ, Rey F, Vidal-Moya JA, Zicovich-Wilson CM (2002) Preferential location of Ge in the double four-membered ring units of ITQ-7 zeolite. J Phys Chem B 106(10):2634–2642

    Article  CAS  Google Scholar 

  15. Corma A, Navarro MT, Rey F, Valencia S (2001) Synthesis of pure polymorph C of beta zeolite in a fluoride-free system. Chem Commun 16:1486–1487

    Article  CAS  Google Scholar 

  16. Sastre G, Pulido A, Castaneda R, Corma A (2004) Effect of the germanium incorporation in the synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 zeolites. J Phys Chem B 108(26):8830–8835

    Article  CAS  Google Scholar 

  17. Sun JL, Bonneau C, Cantin A, Corma A, Diaz-Cabanas MJ, Moliner M, Zhang DL, Li MR, Zou XD (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458(7242):1154–1157

    Article  CAS  Google Scholar 

  18. Mintova S, Olson NH, Bein T (1999) Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids. Angew Chem Int Ed 38(21):3201–3204

    Article  CAS  Google Scholar 

  19. Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17(10):2494–2513

    Article  CAS  Google Scholar 

  20. Larlus O, Mintova S, Bein T (2006) Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous Mesoporous Mater 96(1–3):405–412

    Article  CAS  Google Scholar 

  21. Larsen SC (2007) Nanocrystalline zeolites and zeolite structures: synthesis, characterization, and applications. J Phys Chem C 111(50):18464–18474

    Article  CAS  Google Scholar 

  22. Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106(3):896–910

    Article  CAS  Google Scholar 

  23. Egeblad K, Christensen CH, Kustova M, Christensen CH (2008) Templating mesoporous zeolites. Chem Mater 20(3):946–960

    Article  CAS  Google Scholar 

  24. Schuth F (2003) Endo- and exotemplating to create high-surface-area inorganic materials. Angew Chem Int Ed 42(31):3604–3622

    Article  CAS  Google Scholar 

  25. Scherzer J (1978) De-aluminated faujasite-type structures with SiO2-Al2O3 ratios over 100. J Catal 54(2):285–288

    Article  CAS  Google Scholar 

  26. Lynch J, Raatz F, Dufresne P (1987) Characterization of the textural properties of dealuminated HY forms. Zeolites 7(4):333–340

    Article  CAS  Google Scholar 

  27. Cartlidge S, Nissen HU, Wessicken R (1989) Ternary mesoporous structure of ultrastable zeolite CSZ-1. Zeolites 9(4):346–349

    Article  CAS  Google Scholar 

  28. Choifeng C, Hall JB, Huggins BJ, Beyerlein RA (1993) Electron-microscope investigation of mesopore formation and aluminum migration in USY catalysts. J Catal 140(2):395–405

    Article  CAS  Google Scholar 

  29. Sasaki Y, Suzuki T, Takamura Y, Saji A, Saka H (1998) Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera. J Catal 178(1):94–100

    Article  CAS  Google Scholar 

  30. Janssen AH, Koster AJ, de Jong KP (2001) Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y. Angew Chem Int Ed 40(6):1102–1104

    Article  CAS  Google Scholar 

  31. Janssen AH, Koster AJ, de Jong KP (2002) On the shape of the mesopores in zeolite Y: a three-dimensional transmission electron microscopy study combined with texture analysis. J Phys Chem B 106(46):11905–11909

    Article  CAS  Google Scholar 

  32. Dutartre R, deMenorval LC, DiRenzo F, McQueen D, Fajula F, Schulz P (1996) Mesopore formation during steam dealumination of zeolites: influence of initial aluminum content and crystal size. Microporous Mater 6(5–6):311–320

    Article  CAS  Google Scholar 

  33. McQueen D, Chiche BH, Fajula F, Auroux A, Guimon C, Fitoussi F, Schulz P (1996) A multitechnique characterization of the acidity of dealuminated mazzite. J Catal 161(2):587–596

    Article  CAS  Google Scholar 

  34. Nesterenko NS, Thibault-Starzyk F, Montouillout V, Yuschenko VV, Fernandez C, Gilson JP, Fajula F, Ivanova II (2004) Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO. Microporous Mesoporous Mater 71(1–3):157–166

    Article  CAS  Google Scholar 

  35. Lee KH, Ha BH (1998) Characterization of mordenites treated by HCl/steam or HF. Microporous Mesoporous Mater 23(3–4):211–219

    Article  CAS  Google Scholar 

  36. Perez-Ramirez J, Kapteijn F, Groen JC, Domenech A, Mul G, Moulijn JA (2003) Steam-activated FeMFI zeolites: evolution of iron species and activity in direct N2O decomposition. J Catal 214(1):33–45

    Article  CAS  Google Scholar 

  37. Lago RM, Haag WO, Mikovsky RJ, Olson DH, Hellring SD, Schmitt KD, Kerr GT (1986) The nature of the catalytic sites in HZSM-5- activity enhancement. In: Murakami AI Y, Ward JW (eds) Studies in surface science and catalysis, vol 28. Elsevier, Amsterdam, pp 677–684

    Google Scholar 

  38. Rozwadowski M, Kornatowski J, Wloch J, Erdmann K, Golembiewski R (2002) Attempt to apply the fractal geometry for characterisation of dealuminated ZSM-5 zeolite. Appl Surf Sci 191(1–4):352–361

    Article  CAS  Google Scholar 

  39. Levanmao R, Vo NTC, Sjiariel B, Lee L, Denes G (1992) Mesoporous aluminosilicates – preparation from Ca-a zeolite by treatment with ammonium fluorosilicate. J Mater Chem 2(6):595–599

    Article  Google Scholar 

  40. Triantafyllidis KS, Vlessidis AG, Evmiridis NP (2000) Dealuminated H-Y zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Ind Eng Chem Res 39(2):307–319

    Article  CAS  Google Scholar 

  41. Beyer HK, Belenykaja I (1980) A new method for the dealumination of faujasite-type zeolites. In: Imelik B, Naccache C, Ben Taarit Y, Vádrine JC, Condurier G, Praliaud H (eds) Studies in surface science and catalysis, vol 5. Elsevier, Amsterdam, pp 203–210

    Google Scholar 

  42. Scherzer J (1984) The preparation and characterization of aluminum-deficient zeolites. ACS Symp Ser 248:157–200

    Article  CAS  Google Scholar 

  43. Goyvaerts D, Martens JA, Grobet PJ, Jacobs PA (1991) Factors affecting the formation of extra-framework species and mesopores during dealumination of zeolite Y. In: Poncelet G, Jacobs PA, Grange P, Delmon B (eds) Studies in surface science and catalysis, vol 63. Elsevier, Amsterdam, pp 381–395

    Google Scholar 

  44. Dessau RM, Valyocsik EW, Goeke NH (1992) Aluminum zoning in Zsm-5 as revealed by selective silica removal. Zeolites 12(7):776–779

    Article  CAS  Google Scholar 

  45. Ogura M, Shinomiya SY, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique – new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A Gen 219(1–2):33–43

    Article  CAS  Google Scholar 

  46. Groen JC, Perez-Ramirez J, Peffer LAA (2002) Formation of uniform mesopores in ZSM-5 zeolite upon alkaline post-treatment? Chem Lett 1:94–95

    Article  Google Scholar 

  47. Groen JC, Peffer LAA, Perez-Ramirez J (2003) Pore size determination in modified micro- and mesoporous materials: pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60(1–3):1–17

    Article  CAS  Google Scholar 

  48. Groen JC, Jansen JC, Moulijn JA, Perez-Ramirez J (2004) Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J Phys Chem B 108(35):13062–13065

    Article  CAS  Google Scholar 

  49. Groen JC, Bach T, Ziese U, Donk AMPV, de Jong KP, Moulijn JA, Perez-Ramirez J (2005) Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 127(31):10792–10793

    Article  CAS  Google Scholar 

  50. Groen JC, Moulijn JA, Perez-Ramirez J (2005) Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination. Microporous Mesoporous Mater 87(2):153–161; Groen JC, Moulijn JA, Perez-Ramirez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16(22):2121–2131; Verboekend D, Perez-Ramirez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1(6):879–890; Milina M, Mitchell S, Crivelli P, Cooke D, Perez-Ramirez J (2014) Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat Commun 5

    Google Scholar 

  51. Su LL, Liu L, Zhuang JQ, Wang HX, Li YG, Shen WJ, Xu YD, Bao XH (2003) Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catal Lett 91(3–4):155–167

    Article  CAS  Google Scholar 

  52. Chal R, Cacciaguerra T, van Donk S, Gerardin C (2010) Pseudomorphic synthesis of mesoporous zeolite Y crystals. Chem Commun 46(41):7840–7842

    Article  CAS  Google Scholar 

  53. de Jong KP, Zecevic J, Friedrich H, de Jongh PE, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F (2010) Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem Int Ed 49(52):10074–10078; Verboekend D, Vile G, Perez-Ramirez J (2012) Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv Funct Mater 22(5):916–928

    Google Scholar 

  54. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122(29):7116–7117

    Article  CAS  Google Scholar 

  55. Christensen CH, Johannsen K, Schmidt I, Christensen CH (2003) Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. J Am Chem Soc 125(44):13370–13371

    Article  CAS  Google Scholar 

  56. Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13(12):4416–4418

    Article  CAS  Google Scholar 

  57. Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen CJH (2003) TEM stereo-imaging of mesoporous zeolite single crystals. Chem Commun 8:958–959

    Article  CAS  Google Scholar 

  58. Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater 65(1):59–75

    Article  CAS  Google Scholar 

  59. Zhu K, Egeblad K, Christensen CH (2007) Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. Eur J Inorg Chem 25:3955–3960

    Article  CAS  Google Scholar 

  60. Kustova M, Egeblad K, Zhu K, Christensen CH (2007) Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chem Mater 19(12):2915–2917

    Article  CAS  Google Scholar 

  61. Tao YS, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125(20):6044–6045

    Article  CAS  Google Scholar 

  62. Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145(1–3):90–98

    Article  CAS  Google Scholar 

  63. Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12(21):1625–1628

    Article  CAS  Google Scholar 

  64. Hanzawa Y, Kaneko K, Yoshizawa N, Pekala RW, Dresselhaus MS (1998) The pore structure determination of carbon aerogels. Adsorption 4(3–4):187–195

    Article  CAS  Google Scholar 

  65. Hanzawa Y, Hatori H, Yoshizawa N, Yamada Y (2002) Structural changes in carbon aerogels with high temperature treatment. Carbon 40(4):575–581

    Article  CAS  Google Scholar 

  66. Tao YS, Kanoh H, Hanzawa Y, Kaneko K (2004) Template synthesis and characterization of mesoporous zeolites. Colloid Surf A 241(1–3):75–80

    Article  CAS  Google Scholar 

  67. Kustova MY, Hasselriis P, Christensen CH (2004) Mesoporous MEL-type zeolite single crystal catalysts. Catal Lett 96(3–4):205–211

    Article  CAS  Google Scholar 

  68. Wei XT, Smirniotis PG (2006) Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous Mesoporous Mater 89(1–3):170–178

    Article  CAS  Google Scholar 

  69. Pavlačková Z, Košová G, Žilková N, Zukal A, Čejka J (2006) Formation of mesopores in ZSM-5 by carbon templating. Stud Surf Sci Catal 162:905–912

    Article  Google Scholar 

  70. Egeblad K, Kustova M, Klitgaard SK, Zhu KK, Christensen CH (2007) Mesoporous zeolite and zeotype single crystals synthesized in fluoride media. Microporous Mesoporous Mater 101(1–2):214–223

    Article  CAS  Google Scholar 

  71. Sakthivel A, Huang SJ, Chen WH, Lan ZH, Chen KH, Kim TW, Ryoo R, Chiang AST, Liu SB (2004) Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem Mater 16(16):3168–3175

    Article  CAS  Google Scholar 

  72. Yang ZX, Xia YD, Mokaya R (2004) Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv Mater 16(8):727–732

    Article  CAS  Google Scholar 

  73. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746

    Article  CAS  Google Scholar 

  74. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13(9):677–681

    Article  CAS  Google Scholar 

  75. Fang YM, Hu HQ (2006) An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J Am Chem Soc 128(33):10636–10637

    Article  CAS  Google Scholar 

  76. Fan W, Snyder MA, Kumar S, Lee PS, Yoo WC, McCormick AV, Penn RL, Stein A, Tsapatsis M (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7(12):984–991

    Article  CAS  Google Scholar 

  77. Tao YS, Kanoh H, Kaneko K (2005) Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating. Langmuir 21(2):504–507

    Article  CAS  Google Scholar 

  78. Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with zeolitic microporous frameworks. J Am Chem Soc 121(17):4308–4309

    Article  CAS  Google Scholar 

  79. Cho HS, Ryoo R (2012) Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous Mesoporous Mater 151:107–112

    Article  CAS  Google Scholar 

  80. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19

    Article  CAS  Google Scholar 

  81. Barton TJ, Bull LM, Klemperer WG, Loy DA, McEnaney B, Misono M, Monson PA, Pez G, Scherer GW, Vartuli JC, Yaghi OM (1999) Tailored porous materials. Chem Mater 11(10):2633–2656

    Article  CAS  Google Scholar 

  82. Ciesla U, Schuth F (1999) Ordered mesoporous materials. Microporous Mesoporous Mater 27(2–3):131–149

    Article  CAS  Google Scholar 

  83. Mehlhorn D, Valiullin R, Karger J, Cho K, Ryoo R (2012) Exploring mass transfer in mesoporous zeolites by NMR diffusometry. Materials 5(4):699–720; Mehlhorn D, Valiullin R, Karger J, Cho K, Ryoo R (2012) Intracrystalline diffusion in mesoporous zeolites. Chemphyschem 13(6):1495–1499; Karger J, Valiullin R (2013) Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chem Soc Rev 42(9):4172–4197

    Google Scholar 

  84. Milina M, Mitchell S, Cooke D, Crivelli P, Pérez-Ramírez J (2015) Impact of pore connectivity on the design of long-lived zeolite catalysts. Angew Chem Int Ed 54(5):1591–1594

    Article  CAS  Google Scholar 

  85. Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38(1–2):56–77

    Article  CAS  Google Scholar 

  86. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701

    Article  CAS  Google Scholar 

  87. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  CAS  Google Scholar 

  88. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036

    Article  CAS  Google Scholar 

  89. Sayari A, Yang Y, Kruk M, Jaroniec M (1999) Expanding the pore size of MCM-41 silicas: use of amines as expanders in direct synthesis and postsynthesis procedures. J Phys Chem B 103(18):3651–3658

    Article  CAS  Google Scholar 

  90. Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121(1):254–255

    Article  CAS  Google Scholar 

  91. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Trimethylsilyl derivatives of alkyltrimethylammonium-Kanemite complexes and their conversion to microporous SiO2 materials. Bull Chem Soc Jpn 63(5):1535–1537

    Article  CAS  Google Scholar 

  92. Inagaki S, Fukushima Y, Kuroda K (1994) Synthesis and characterization of highly ordered mesoporous material – FSM-16, from a layered polysilicate. Zeolites Relat Microporous Mater State Art 84:125–132

    CAS  Google Scholar 

  93. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  94. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552

    Article  CAS  Google Scholar 

  95. Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261(5126):1299–1303

    Article  CAS  Google Scholar 

  96. Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267(5201):1138–1143

    Article  CAS  Google Scholar 

  97. Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD (1994) Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 368(6469):317–321

    Article  CAS  Google Scholar 

  98. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10(10):2950–2963

    Article  CAS  Google Scholar 

  99. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17(18):4577–4593

    Article  CAS  Google Scholar 

  100. Gusev VY, Feng XB, Bu Z, Haller GL, OBrien JA (1996) Mechanical stability of pure silica mesoporous MCM-41 by nitrogen adsorption and small-angle X-ray diffraction measurements. J Phys Chem 100(6):1985–1988

    Article  CAS  Google Scholar 

  101. Jun S, Kim JM, Ryoo R, Ahn YS, Han MK (2000) Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Microporous Mesoporous Mater 41(1–3):119–127

    Article  CAS  Google Scholar 

  102. Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, Van Der Voort P, Cool P, Vansant EF (2002) A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem Mater 14(5):2317–2324

    Article  CAS  Google Scholar 

  103. Karlsson A, Stocker M, Schmidt R (1999) Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater 27(2–3):181–192

    Article  CAS  Google Scholar 

  104. Liu Y, Zhang WZ, Pinnavaia TJ (2000) Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. J Am Chem Soc 122(36):8791–8792

    Article  CAS  Google Scholar 

  105. Liu Y, Zhang WZ, Pinnavaia TJ (2001) Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew Chem Int Ed 40(7):1255–1258

    Article  CAS  Google Scholar 

  106. Zhang Z, Han Y, Xiao FS, Qiu S, Zhu L, Wang R, Yu Y, Zhang Z, Zou B, Wang Y, Sun H, Zhao D, Wei Y (2001) Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J Am Chem Soc 123(21):5014–5021

    Article  CAS  Google Scholar 

  107. Liu Y, Pinnavaia TJ (2002) Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chem Mater 14(1):3–5

    Article  CAS  Google Scholar 

  108. Serrano DP, García RA, Vicente G, Linares M, Procházková D, Cejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279(2):366–380

    Article  CAS  Google Scholar 

  109. Xia YD, Mokaya R (2004) Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. J Mater Chem 14(23):3427–3435

    Article  CAS  Google Scholar 

  110. Naik SP, Chiang AST, Thompson RW (2003) Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity. J Phys Chem B 107(29):7006–7014

    Article  CAS  Google Scholar 

  111. Huang L, Guo W, Deng P, Xue Z, Li Q (2000) Investigation of synthesizing MCM-41/ZSM-5 composites. J Phys Chem B 104(13):2817–2823

    Article  CAS  Google Scholar 

  112. Xia Y, Mokaya R (2004) On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J Mater Chem 14(5):863–870

    Article  CAS  Google Scholar 

  113. Guo W, Xiong C, Huang L, Li Q (2001) Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures. J Mater Chem 11(7):1886–1890

    Article  CAS  Google Scholar 

  114. Guo W, Huang L, Deng P, Xue Z, Li Q (2001) Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture. Microporous Mesoporous Mater 44–45(6):427–434

    Article  Google Scholar 

  115. Prokešova P, Mintova S, Cejka J, Bein T (2003) Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous Mesoporous Mater 64(1–3):165–174

    Article  CAS  Google Scholar 

  116. Naik SP, Chen JC, Chiang AST (2002) Synthesis of silicalite nanocrystals via the steaming of surfactant protected precursors. Microporous Mesoporous Mater 54(3):293–303

    Article  CAS  Google Scholar 

  117. Hasan F, Singh R, Li G, Zhao D, Webley PA (2012) Direct synthesis of hierarchical LTA zeolite via a low crystallization and growth rate technique in presence of cetyltrimethylammonium bromide. J Colloid Interface Sci 382(1):1–12

    Article  CAS  Google Scholar 

  118. Jo C, Jung J, Shin HS, Kim J, Ryoo R (2013) Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem Int Ed 52(38):10014–10017

    Article  CAS  Google Scholar 

  119. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723

    Article  CAS  Google Scholar 

  120. Chmelka BF (2006) Zeolites – large molecules welcome. Nat Mater 5(9):681–682

    Article  CAS  Google Scholar 

  121. Huttinger KJ, Jung MF (1989) Kinetics of the synthesis of trialkyl [−3-(trimethoxysilyl)propyl]-ammonium chloride and their antimicrobial action as fixed biocides. Chem Ing Tech 61(3):258–259

    Article  Google Scholar 

  122. Ryoo R, Kim JM, Ko CH, Shin CH (1996) Disordered molecular sieve with branched mesoporous channel network. J Phys Chem 100(45):17718–17721

    Article  CAS  Google Scholar 

  123. Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F (2003) Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J Chem 27(1):73–79

    Article  CAS  Google Scholar 

  124. Cho K, Cho HS, de Menorval LC, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21(23):5664–5673

    Article  CAS  Google Scholar 

  125. Cho K, Ryoo R, Asahina S, Xiao C, Klingstedt M, Umemura A, Anderson MW, Terasaki O (2011) Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sci 13(4):750–756

    Article  CAS  Google Scholar 

  126. Choi M, Lee DH, Na K, Yu BW, Ryoo R (2009) High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: reusability under aerobic conditions. Angew Chem Int Ed 48(20):3673–3676

    Article  CAS  Google Scholar 

  127. Valiullin R, Kärger J, Cho K, Choi M, Ryoo R (2011) Dynamics of water diffusion in mesoporous zeolites. Microporous Mesoporous Mater 142(1):236–244

    Article  CAS  Google Scholar 

  128. Choi M, Srivastava R, Ryoo R (2006) Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem Commun 42:4380–4382

    Article  CAS  Google Scholar 

  129. Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51(8):1962–1965

    Article  CAS  Google Scholar 

  130. Kim J, Jo C, Lee S, Ryoo R (2014) Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis. J Mater Chem A 2(30):11905–11912

    Article  CAS  Google Scholar 

  131. Srivastava R, Choi M, Ryoo R (2006) Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem Commun 43:4489–4491

    Article  CAS  Google Scholar 

  132. Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R (2008) Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. J Catal 254(2):296–303

    Article  CAS  Google Scholar 

  133. Lee DH, Choi M, Yu BW, Ryoo R (2009) Organic functionalization of mesopore walls in hierarchically porous zeolites. Chem Commun 1:74–76

    Article  Google Scholar 

  134. Vuong GT, Do TO (2007) A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium. J Am Chem Soc 129(13):3810–3811

    Article  CAS  Google Scholar 

  135. Wang H, Pinnavaia TJ (2006) MFI zeolite with small and uniform intracrystal mesopores. Angew Chem Int Ed 45(45):7603–7606

    Article  CAS  Google Scholar 

  136. Xiao FS, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su DS, Schlögl R, Yokoi T, Tatsumi T (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed 45(19):3090–3093

    Article  CAS  Google Scholar 

  137. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461(7261):246–249

    Article  CAS  Google Scholar 

  138. Corma A (2009) Materials chemistry catalysts made thinner. Nature 461(7261):182–183

    Article  CAS  Google Scholar 

  139. Park W, Yu D, Na K, Jelfs KE, Slater B, Sakamoto Y, Ryoo R (2011) Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chem Mater 23(23):5131–5137

    Article  CAS  Google Scholar 

  140. Jung J, Jo C, Cho K, Ryoo R (2012) Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. J Mater Chem 22(11):4637–4640

    Article  CAS  Google Scholar 

  141. Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R (2010) Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc 132(12):4169–4177

    Article  CAS  Google Scholar 

  142. Maheshwari S, Jordan E, Kumar S, Bates FS, Penn RL, Shantz DF, Tsapatsis M (2008) Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor. J Am Chem Soc 130(4):1507–1516

    Article  CAS  Google Scholar 

  143. Tsapatsis M, Maheshwari S (2008) Pores by pillaring: not always a maze. Angew Chem Int Ed 47(23):4262–4263

    Article  CAS  Google Scholar 

  144. Roth WJ, Cejka J (2011) Two-dimensional zeolites: dream or reality? Catal Sci Technol 1(1):43–53

    Article  CAS  Google Scholar 

  145. Schnell SK, Wu L, Koekkoek AJJ, Kjelstrup S, Hensen EJM, Vlugt TJH (2013) Adsorption of argon on MFI nanosheets: experiments and simulations. J Phys Chem C 117(46):24503–24510

    Article  CAS  Google Scholar 

  146. Na K, Park W, Seo Y, Ryoo R (2011) Disordered assembly of MFI zeolite nanosheets with a large volume of intersheet mesopores. Chem Mater 23(5):1273–1279

    Article  CAS  Google Scholar 

  147. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95(3):559–614

    Article  CAS  Google Scholar 

  148. Cejka J, Centi G, Perez-Pariente J, Roth WJ (2012) Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catal Today 179(1):2–15

    Article  CAS  Google Scholar 

  149. Seo Y, Cho K, Jung Y, Ryoo R (2013) Characterization of the surface acidity of MFI zeolite nanosheets by P-31 NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catal 3(4):713–720

    Article  CAS  Google Scholar 

  150. Lunsford JH, Rothwell WP, Shen W (1985) Acid sites in zeolite Y – a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J Am Chem Soc 107(6):1540–1547

    Article  CAS  Google Scholar 

  151. Baltusis L, Frye JS, Maciel GE (1986) Phosphine oxide as NMR probes for adsorption sites on surfaces. J Am Chem Soc 108(22):7119–7120

    Article  CAS  Google Scholar 

  152. Rakiewicz EF, Peters AW, Wormsbecher RF, Sutovich KJ, Müller KT (1998) Characterization of acid sites in zeolitic and other inorganic systems using solid-state P-31 NMR of the probe molecule trimethylphosphine oxide. J Phys Chem B 102(16):2890–2896

    Article  CAS  Google Scholar 

  153. Zhao Q, Chen WH, Huang SJ, Wu YC, Lee HK, Liu SB (2002) Discernment and quantification of internal and external acid sites on zeolites. J Phys Chem B 106(17):4462–4469

    Article  CAS  Google Scholar 

  154. Jo C, Cho K, Kim J, Ryoo R (2014) MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chem Commun 50(32):4175–4177

    Article  CAS  Google Scholar 

  155. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333(6040):328–332

    Article  CAS  Google Scholar 

  156. Möller K, Bein T (2011) Pores within pores-How to craft ordered hierarchical zeolites. Science 333(6040):297–298

    Article  CAS  Google Scholar 

  157. Kore R, Srivastava R, Satpati B (2014) ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents. Chem Eur J 20(36):11511–11521

    Article  CAS  Google Scholar 

  158. Jo C, Jung J, Ryoo R (2014) Mesopore expansion of surfactant-directed nanomorphic zeolites with trimethylbenzene. Microporous Mesoporous Mater 194:83–89

    Article  CAS  Google Scholar 

  159. Kim W, Kim JC, Kim J, Seo Y, Ryoo R (2013) External surface catalytic sites of surfactant-tailored nanomorphic zeolites for benzene isopropylation to cumene. ACS Catal 3(2):192–195

    Article  CAS  Google Scholar 

  160. Seo Y, Lee S, Jo C, Ryoo R (2013) Microporous aluminophosphate nanosheets and their nanomorphic zeolite analogues tailored by hierarchical structure-directing amines. J Am Chem Soc 135(24):8806–8809

    Article  CAS  Google Scholar 

  161. Kim J, Choi M, Ryoo R (2010) Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal 269(1):219–228

    Article  CAS  Google Scholar 

  162. Kim J, Park W, Ryoo R (2011) Surfactant-directed zeolite nanosheets: a high-performance catalyst for gas-phase Beckmann rearrangement. ACS Catal 1(4):337–341

    Article  CAS  Google Scholar 

  163. Kim JC, Cho K, Ryoo R (2014) High catalytic performance of surfactant-directed nanocrystalline zeolites for liquid-phase Friedel-Crafts alkylation of benzene due to external surfaces. Appl Catal A Gen 470:420–426

    Article  CAS  Google Scholar 

  164. Koekkoek AJJ, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen EJM (2013) Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. J Catal 299:81–89

    Article  CAS  Google Scholar 

  165. Zou W, Xie P, Hua W, Wang Y, Kong D, Yue Y, Ma Z, Yang W, Gao Z (2014) Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets. J Mol Catal A Chem 394:83–88

    Article  CAS  Google Scholar 

  166. Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T (2012) Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Appl Catal A Gen 445:215–220

    Article  CAS  Google Scholar 

  167. Kim J, Kim W, Seo Y, Kim JC, Ryoo R (2013) n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J Catal 301:187–197

    Article  CAS  Google Scholar 

  168. Verheyen E, Jo C, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi TI, Bals S, Tendeloo GV, Ryoo R (2013) Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. J Catal 300:70–80

    Article  CAS  Google Scholar 

  169. Reddy JK, Motokura K, Koyama TR, Miyaji A, Baba T (2012) Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. J Catal 289:53–61

    Article  CAS  Google Scholar 

  170. Martens JA, Jacobs PA (1986) The potential and limitations of the normal-decane hydroconversion as a test reaction for characterization of the void space of molecular-sieve zeolites. Zeolites 6(5):334–348

    Article  CAS  Google Scholar 

  171. Martens JA, Tielen M, Jacobs PA (1984) Estimation of the void structure and pore dimensions of molecular-sieve zeolites using the hydroconversion of normal-decane. Zeolites 4(2):98–107

    Article  CAS  Google Scholar 

  172. Holm MS, Taarning E, Egeblad K, Christensen CH (2011) Catalysis with hierarchical zeolites. Catal Today 168(1):3–16

    Article  CAS  Google Scholar 

  173. Lee HW, Park SH, Jeon JK, Ryoo R, Kim W, Suh DJ, Park YK (2014) Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets. Catal Today 232:119–126

    Article  CAS  Google Scholar 

  174. Liu F, Willhammar T, Wang L, Zhu L, Sun Q, Meng X, Carrillo-Cabrera W, Zou X, Xiao FS (2012) ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. J Am Chem Soc 134(10):4557–4560

    Article  CAS  Google Scholar 

  175. Boltz M, Losch P, Louis B, Rioland G, Tzanis L, Daou TJ (2014) MFI-type zeolite nanosheets for gas-phase aromatics chlorination: a strategy to overcome mass transfer limitations. RSC Adv 4(52):27242–27249

    Article  CAS  Google Scholar 

  176. Heitmann GP, Dahlhoff G, Hölderich WF (1999) Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam. J Catal 186(1):12–19

    Article  CAS  Google Scholar 

  177. Degnan TF (2003) The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. J Catal 216(1–2):32–46

    Article  CAS  Google Scholar 

  178. Sastre G, Corma A (2009) The confinement effect in zeolites. J Mol Catal A Chem 305(1–2):3–7

    Article  CAS  Google Scholar 

  179. Kim JC, Lee S, Cho K, Na K, Lee C, Ryoo R (2014) Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer-Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range. ACS Catal 4(11):3919–3927

    Article  CAS  Google Scholar 

  180. Na K, Jo C, Kim J, Ahn WS, Ryoo R (2011) MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catal 1(8):901–907

    Article  CAS  Google Scholar 

  181. Wang J, Xu L, Zhang K, Peng H, Wu H, Jiang JG, Liu Y, Wu P (2012) Multilayer structured MFI-type titanosilicate: synthesis and catalytic properties in selective epoxidation of bulky molecules. J Catal 288:16–23

    Article  CAS  Google Scholar 

  182. Luo HY, Bui L, Gunther WR, Min E, Román-Leshkov Y (2012) Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones. ACS Catal 2(12):2695–2699

    Article  CAS  Google Scholar 

  183. Schick J, Daou TJ, Caullet P, Paillaud J, Patarin J, Mangold-Callarec C (2011) Surfactant-modified MFI nanosheets: a high capacity anion-exchanger. Chem Commun 47(3):902–904

    Article  CAS  Google Scholar 

  184. Kabalan I, Rioland G, Nouali H, Lebeau B, Rigolet S, Fadlallah MB, Toufaily J, Hamiyeh T, Daou TJ (2014) Synthesis of purely silica MFI-type nanosheets for molecular decontamination. RSC Adv 4(70):37353–37358

    Article  CAS  Google Scholar 

  185. Varoon K, Zhang X, Elyassi B, Brewer DD, Gettel M, Kumar S, Lee JA, Maheshwari S, Mittal A, Sung CY, Cococcioni M, Francis LF, McCormick AV, Mkhoyan KA, Tsapatsis M (2011) Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334(6052):72–75

    Article  CAS  Google Scholar 

  186. Jo C, Seo Y, Cho K, Kim J, Shin HS, Lee M, Kim JC, Kim SO, Lee JY, Ihee H, Ryoo R (2014) Random-graft polymer-directed synthesis of inorganic mesostructures with ultrathin frameworks. Angew Chem Int Ed 53(20):5117–5121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryong Ryoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryoo, R., Cho, K., Mota, F.M. (2016). Mesostructured Zeolites. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_4

Download citation

Publish with us

Policies and ethics