Skip to main content

Interlayer Expansion of the Layered Zeolites

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Zeolites with three-dimensional (3D) open-framework structures are generally crystallized under hydrothermal conditions. In addition to this conventional route, the formation of the 3D structures can be achieved by the structural conversion of zeolitic hydrous layer silicates (HLSs) through topotactic dehydration–condensation of silanols on the HLSs. The interlayer spacings can be expanded by the interlayer silylation of zeolitic HLSs, forming interlayer-expanded zeolite (IEZ) materials. The IEZ materials are crystalline and show similar physical and chemical properties to the conventional 3D zeolites. Creating larger interlayer space will provide more open entrance for reactants and decrease the diffusion constrains in catalytic reaction. In this chapter, recent developments of the IEZ materials, in particular interlayer-expanded MWW-, FER-, and CDO-type zeolites, are featured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  2. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702

    Article  CAS  Google Scholar 

  3. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312

    Article  CAS  Google Scholar 

  4. International Zeolite Association. URL: http://www.iza-structure.org/

  5. Bellussi G, Pollesel P (2005) Industrial applications of zeolite catalysis: production and uses of light olefins. Stud Surf Sci Catal 158:1201–1212

    Article  Google Scholar 

  6. Bellussi G, Carati A, Rizzo C, Millini R (2013) New trends in the synthesis of crystalline microporous materials. Catal Sci Technol 3:833–857

    Article  CAS  Google Scholar 

  7. Roth WJ, Dorset DL (2011) Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous Mesoporous Mater 142:32–36

    Article  CAS  Google Scholar 

  8. Roth WJ, Nachtigall P, Morris RE, ÄŚejka J (2014) Chem Rev (in press) dx.doi.org/10.1021/cr400600f

    Google Scholar 

  9. Tsapatsis M, Maheshwari S (2008) Pores by pillaring: not always a maze. Angew Chem Int Ed 47:4262–4263

    Article  CAS  Google Scholar 

  10. Mochizuki D, Shimojima A, Imagawa T, Kuroda K (2005) Molecular manipulation of two-and three-dimensional silica nanostructures by alkoxysilylation of a layered silicate octosilicate and subsequent hydrolysis of alkoxy groups. J Am Chem Soc 127:7183–7191

    Article  CAS  Google Scholar 

  11. Mochizuki D, Kuroda K (2006) Design of silicate nanostructures by interlayer alkoxysilylation of layered silicates (magadiite and kenyaite) and subsequent hydrolysis of alkoxy groups. New J Chem 30:277–284

    Article  CAS  Google Scholar 

  12. Mochizuki D, Kuroda K (2006) Synthesis of microporous inorganic-organic hybrids from layered octosilicate by silylation with 1, 4-bis (trichloro-and dichloromethyl-silyl) benzenes. Chem Mater 18:5223–5229

    Article  CAS  Google Scholar 

  13. Ishii R, Ikeda T, Itoh T, Ebina T, Yokoyama T, Hanaoka T, Mizukami F (2006) Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite. J Mater Chem 16:4035–4043

    Article  CAS  Google Scholar 

  14. Ishii R, Ikeda T, Mizukami F (2009) Preparation of a microporous layered organic–inorganic hybrid nanocomposite using p-aminotrimethoxysilane and a crystalline layered silicate, ilerite. J Colloid Interface Sci 331:417–424

    Article  CAS  Google Scholar 

  15. Okutomo S, Kuroda K, Ogawa M (1999) Preparation and characterization of silylated-magadiites. Appl Clay Sci 15:253–264

    Article  CAS  Google Scholar 

  16. Shimojima A, Mochizuki D, Kuroda K (2001) Synthesis of silylated derivatives of a layered polysilicate kanemite with mono-, di-, and trichloro(alkyl)silanes. Chem Mater 13:3603–3609

    Article  CAS  Google Scholar 

  17. Mochizuki D, Shimojima A, Kuroda K (2002) Formation of a new crystalline silicate structure by grafting dialkoxysilyl groups on layered octosilicate. J Am Chem Soc 124:12082–12083

    Article  CAS  Google Scholar 

  18. Fujita I, Kuroda K, Ogawa M (2003) Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols. Chem Mater 15:3134–3141

    Article  CAS  Google Scholar 

  19. Inagaki S, Yokoi T, Kubota Y, Tatsumi T (2007) Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem Commun 5188–5190

    Google Scholar 

  20. Ikeda T, Akiyama Y, Oumi Y, Kawai A, Mizukami F (2004) The topotactic conversion of a novel layered silicate into a new framework zeolite. Angew Chem Int Ed 43:4892–4896

    Article  CAS  Google Scholar 

  21. Wu P, Ruan J, Wang L, Wu L, Wang Y, Liu Y, Fan W, He M, Terasaki O, Tatsumi T (2008) Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors. J Am Chem Soc 130:8178–8187

    Article  CAS  Google Scholar 

  22. Rubin M, Chu P (1990) US Patent 4,954,325, to Mobil Oil Corporation

    Google Scholar 

  23. Leonowicz M, Lawton J, Lawton S, Rubin M (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264:1910–1913

    Article  CAS  Google Scholar 

  24. Lawton S, Leonowicz M, Partridge R, Chu P, Rubin M (1998) Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous Mesoporous Mater 23:109–117

    Article  CAS  Google Scholar 

  25. Bevilacqua M, Meloni D, Sini F, Monaci R, Montanari T (2008) A study of the nature, strength, and accessibility of acid sites of H-MCM-22 zeolite. J Phys Chem C 112:9023–9033

    Article  CAS  Google Scholar 

  26. Corma A, Gonzàlez-Alfaro V, Orchillès AV (1995) Catalytic cracking of alkanes on MCM-22 zeolite: comparison with ZSM-5 and beta zeolite and its possibility as an FCC cracking additive. Appl Catal A Gen 129:203–215

    Article  CAS  Google Scholar 

  27. Kumar N, Lindfors L (1996) Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane. Appl Catal A Gen 147:175–187

    Article  CAS  Google Scholar 

  28. Corma A, Martinez-Triguero J (1997) The use of MCM-22 as a cracking zeolitic additive for FCC. J Catal 165:102–120

    Article  CAS  Google Scholar 

  29. Corma A, Martínez-Soria V, Schnoeveld E (2000) Alkylation of benzene with short-chain olefins over MCM-22 zeolite: catalytic behaviour and kinetic mechanism. J Catal 192:163–173

    Google Scholar 

  30. Degnan TF Jr, Morris Smith C, Venkat Chaya R (2001) Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Appl Catal A Gen 221:283–294

    Article  CAS  Google Scholar 

  31. Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22

    Article  CAS  Google Scholar 

  32. Kresge CT, Roth WJ (1993) Crystalline oxide material. US Patent 5,266,541, to Mobil Oil Corporation

    Google Scholar 

  33. Kresge CT, Roth WJ (1994) Composition of synthetic porous crystalline material, its synthesis. US Patent 5,278,115, to Mobil Oil Corporation

    Google Scholar 

  34. Corma A, Fornés V, Pergher SB, Maesen Th LM, Buglass JG (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356

    Article  CAS  Google Scholar 

  35. Corma A, Fornés V, Martinez-Triguero J, Pergher S, Maesen Th LM (1999) Delaminated zeolites: combining the benefits of zeolites and mesoporous materials for catalytic uses. J Catal 186:57–63

    Article  CAS  Google Scholar 

  36. Maheshwari S, Martínez C, Portilla MT, Llopis FJ, Corma A, Tsapatsis M (2010) Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. J Catal 272:298–308

    Article  CAS  Google Scholar 

  37. Corma A, Diaz U, Fornés V, Guil JM, Martínez-Triguero J, Creyghton EJ (2000) Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2. J Catal 191:218–224

    Article  CAS  Google Scholar 

  38. Corma A, Fornés V, Guil JM, Pergher S, Maesen Th LM, Buglass JG (2000) Microporous Mesoporous Mater 38:301

    Article  CAS  Google Scholar 

  39. Aguilar J, Pergher SBC, Detoni C, Corma A, Melo FV, Sastre E (2008) Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catal Today 133–135:667–672

    Google Scholar 

  40. Jung H, Park S, Shin C, Park Y, Hong S (2007) Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolites. J Catal 245:65–74

    Article  CAS  Google Scholar 

  41. Inagaki S, Kamino K, Kikuchi E, Matsukata M (2007) Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol. Appl Catal A Gen 318:22–27

    Article  CAS  Google Scholar 

  42. Inagaki S, Tatsumi T (2009) Vapor-phase silylation for the construction of monomeric silica puncheons in the interlayer micropores of Al-MWW layered precursor. Chem Commun 2583–2585

    Google Scholar 

  43. Fan W, Wei S, Yokoi T, Inagaki S, Li J, Wang J, Kondo JN, Tatsumi T (2009) Synthesis, characterization, and catalytic properties of H-Al-YNU-1 and H-Al-MWW with different Si/Al ratios. J Catal 266:268–278

    Article  CAS  Google Scholar 

  44. Inagaki S, Imai H, Tsujiuchi S, Yakushiji H, Yokoi T, Tatsumi T (2011) Enhancement of catalytic properties of interlayer-expanded zeolite Al-MWW via the control of interlayer silylation conditions. Microporous Mesoporous Mater 142:354–362

    Article  CAS  Google Scholar 

  45. Yokoi T, Mizuno S, Imai H, Tatsumi T (in press) Dalton Trans. doi:10.1039/C4DT00352G

    Google Scholar 

  46. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4,410,501

    Google Scholar 

  47. Notari B (1996) Microporous crystalline titanium silicates. Adv Catal 41:253–334

    CAS  Google Scholar 

  48. Tatsumi T, Nakamura M, Negishi S, Tominaga H (1990) Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. Chem Commun 476–477

    Google Scholar 

  49. Thangraj A, Kumar R, Ratnasamy P (1991) Catalytic properties of crystalline titanium silicalites III. Ammoximation of cyclohexanone. J Catal 131:294–297

    Article  Google Scholar 

  50. Tatsumi T, Yako M, Nakamura M, Yuhara Y, Tominaga H (1993) Effect of alkene structure on selectivity in the oxidation of unsaturated alcohols with titanium silicalite-1 catalyst. J Mol Catal 78:L41–L45

    Article  CAS  Google Scholar 

  51. Sonawane HR, Pol AV, Moghe PP, Biswas SS (1994) Selective catalytic oxidation of arylamines to azoxybenzenes with H2O2 over Zeolites. J Chem Soc Chem Commun 1215–1216

    Google Scholar 

  52. Kumar SB, Mirajkar SP, Paris GCG, Kumar P, Kumar R (1995) Epoxidation of styrene over a titanium silicate molecular sieve TS1 using dilute H2O2 as oxidizing agent. J Catal 156:163–166

    Article  CAS  Google Scholar 

  53. Hulea V, Moreau P (1996) The solvent effect in the sulfoxidation of thioethers by hydrogen peroxide using Ti-containing zeolites as catalysts. J Mol Catal A 113:499–505

    Article  CAS  Google Scholar 

  54. Moliner M, Corma A (2014) Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater 189:31–40

    Article  CAS  Google Scholar 

  55. Blasco T, Corma A, Navarro MT, Perez Pariente J (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74

    Article  CAS  Google Scholar 

  56. Newalker BL, Olanrewaju J, Komarneni S (2001) Direct synthesis of titanium-substituted mesoporous SBA15 molecular sieve under microwave hydrothermal conditions. Chem Mater 13:552–557

    Article  Google Scholar 

  57. Koyano K, Tatsumi T (1996) Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure. Chem Commun 145–146

    Google Scholar 

  58. Wu P, Tatsumi T, Komatsu T, Yashima T (2000) A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. Chem Lett 202:774–775

    Article  Google Scholar 

  59. Wu P, Tatsumi T (2001) Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chem Commun 897–898

    Google Scholar 

  60. Wu P, Tatsumi T, Komatsu T, Yashima T (2001) A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal 202:245–255

    Google Scholar 

  61. Wu P, Tatsumi T (2002) Unique trans-selectivity of Ti-MWW in epoxidation of cis/trans-alkenes with hydrogen peroxide. J Phys Chem B 106:748–753

    Article  CAS  Google Scholar 

  62. Corma A, Díaz U, Fornés V, Jordá JL, Domine M, Rey F (1999) Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chem Commun 779–780

    Google Scholar 

  63. Nuntasri D, Wu P, Tatsumi T (2003) Highly active delaminated Ti-MWW for epoxidation of bulky cycloalkenes with hydrogen peroxide. Chem Lett 32:326–327

    Article  CAS  Google Scholar 

  64. Wu P, Nuntasri D, Ruan J, Liu Y, He M, Fan W, Terasaki O, Tatsumi T (2004) Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes. J Phys Chem B 108:19126–19131

    Article  CAS  Google Scholar 

  65. Ruan J, Wu P, Slater B, Terasaki O (2005) Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angew Chem Int Ed 44:6719–6723

    Article  CAS  Google Scholar 

  66. Fan W, Wu P, Namba S, Tatsumi T (2006) Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. J Catal 243:183–191

    Article  CAS  Google Scholar 

  67. Moliner M, Corma A (2012) A synthesis of expanded titanosilicate MWW-related materials from a pure silica precursor. Chem Mater 24:4371–4375

    Article  CAS  Google Scholar 

  68. Wang L, Wang Y, Liu Y, Wu H, Li X, He M, Wu P (2009) Alkoxysilylation of Ti-MWW lamellar precursors into interlayer pore-expanded titanosilicates. J Mater Chem 19:8594–8602

    Article  CAS  Google Scholar 

  69. Yoshioka M, Yokoi T, Tatsumi T (2014) Effectiveness of the reversible structural conversion of MWW zeolite for preparation of interlayer-expanded Ti-MWW with high catalytic performance in olefin epoxidation. Microporous Mesoporous Mater 200:11–18

    Article  CAS  Google Scholar 

  70. Bordiga S, Bonino F, Damin A, Lamberti C (2007) Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Phys Chem Chem Phys 9:4854–4878

    Article  CAS  Google Scholar 

  71. Corma A, Díaz U, García T, Sastre G, Velty A (2010) Multifunctional hybrid organic-inorganic catalytic materials with a hierarchical system of well-defined micro-and mesopores. J Am Chem Soc 132:15011–15021

    Article  CAS  Google Scholar 

  72. Ruan J, Wu P, Slater B, Zhao Z, Wu L, Terasaki O (2009) Structural characterization of interlayer expanded zeolite prepared from ferrierite lamellar precursor. Chem Mater 21:2904–2911

    Article  CAS  Google Scholar 

  73. Gies H, Müller U, Yilmaz B, Feyen M, Tatsumi T, Imai H, Zhang H, Xie B, Xiao F-S, Bao X, Zhang W, De Baerdemaeker T, De Vos D (2012) Interlayer expansion of the hydrous layer silicate RUB-36 to a functionalized, microporous framework silicate: crystal structure analysis and physical and chemical characterization. Chem Mater 24:1536–1545

    Article  CAS  Google Scholar 

  74. Müller U, Yilmaz B, Feyen M, Zhang H, Xiao F-S, De Baerdemaeker T, Tijsebaert B, Jacobs P, Vos DD, Zhang W, Bao X, Imai H, Tatsumi T, Gies H (2012) New zeolite Al-COE-4: reaching highly shape-selective catalytic performance through interlayer expansion. Chem Commun 48:11549–11551

    Article  Google Scholar 

  75. Xiao F-S, Xie B, Zhang H, Wang L, Meng X, Zhang W, Bao X, Yilmaz B, Müller U, Gies H, Imai H, Tatsumi T, Vos DD (2011) Interlayer-expanded microporous titanosilicate catalysts with functionalized hydroxyl groups. ChemCatChem 3:1442–1446

    Article  CAS  Google Scholar 

  76. Corma A, Esteve P, Martínez A (1996) Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst: the influence of the hydrophilicity–hydrophobicity of the zeolite. J Catal 161:11–19

    Article  CAS  Google Scholar 

  77. Fan W, Duan RG, Yokoi T, Wu P, Kubota Y, Tatsumi T (2008) Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J Am Chem Soc 130:10150–10164

    Article  CAS  Google Scholar 

  78. Li H, Zhou D, Tian D, Shi C, Müller U, Feyen M, Yilmaz B, Gies H, Xiao F-S, Vos DD, Yokoi T, Tatsumi T, Bao X, Zhang W (2014) Framework stability and bronsted acidity of isomorphously substituted interlayer-expanded zeolite COE-4: a density functional theory study. Chem Phys Chem 15:1700–1707

    CAS  Google Scholar 

  79. Ikeda T, Kayamori S, Oumi Y, Mizukami F (2010) Structure analysis of Si-atom pillared lamellar silicates having micropore structure by powder x-ray diffraction. J Phys Chem C 114:3466–3476

    Article  CAS  Google Scholar 

  80. Xu H, Yang B, Jiang JG, Jia L, He M, Wu P (2013) Graphene-based electrodes for electrochemical energy storage. Microporous Mesoporous Mater 169:88–96

    Article  CAS  Google Scholar 

  81. Wang YX, Gies H, Lin JH (2007) Crystal structure of the new layer silicate RUB-39 and its topotactic condensation to a microporous zeolite with framework type RRO. Chem Mater 19:4181–4188

    Article  CAS  Google Scholar 

  82. Gies H, Müller U, Yilmaz B, Tatsumi T, Xie B, Xiao F-S, Bao X, Zhang W, Vos DD (2011) Interlayer expansion of the layered zeolite precursor RUB-39: a universal method to synthesize functionalized microporous silicates. Chem Mater 23:2545–2554

    Article  CAS  Google Scholar 

  83. Whittam TV (1983) Zeolites Nu-6 (1) and Nu-6 (2). US Patent 4,397,825, 1983

    Google Scholar 

  84. Xu H, Jia L, Wu H, Yang B, Wu P (2014) Structural diversity of lamellar zeolite Nu-6(1)—postsynthesis of delaminated analogues. Dalton Trans 43:10492–10500

    Article  CAS  Google Scholar 

  85. Rojas A, Camblor MA (2014) HPM-2, the layered precursor to zeolite MTF. Chem Mater 26:1161–1169

    Article  CAS  Google Scholar 

  86. Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Čejka J (2013) A family of zeolites with controlled pore size prepared using a top-down method. Nat Chem 5:628–633

    Article  CAS  Google Scholar 

  87. Xu H, Fu L, Jiang JG, He M, Wu P (2014) Preparation of hierarchical MWW-type titanosilicate by interlayer silylation with dimeric silane. Microporous Mesoporous Mater 189:41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yokoi, T., Tatsumi, T. (2016). Interlayer Expansion of the Layered Zeolites. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_3

Download citation

Publish with us

Policies and ethics