Skip to main content

Zeolite Thin Films and Membranes: From Fundamental to Applications

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Zeolite films and membranes have extensively been investigated since 1992. Many new preparation methods and concepts have been developed, such as microwave synthesis, intergrowth supporting substances, covalent linker synthesis, inner-side synthesis, fluoride-mediated synthesis, variable-temperature synthesis, masking technique, counter-diffusion secondary growth, and pore-plugging synthesis. The remarkable progress made in the preparation has stimulated many application researches of zeolite films and membranes, such as dehydration of various organic solvents, organics extraction from organic/water mixtures, separation of organic mixtures, gas separation, oil–water separation, desalination of seawater, membrane reactors, membrane microreactors, low-k materials, corrosion-resistant materials, sensors, fuel cells, and batteries. The recent progress in preparation and applications of zeolite membranes from 2000 has been summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morigami Y, Kondo M, Abe J, Kita H, Okamoto K (2001) The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol 25(1–3):251–260

    Article  CAS  Google Scholar 

  2. denExter MJ, Jansen JC, vandeGraaf JM, Kapteijn F, Moulijn JA, vanBekkum H (1996) Zeolite-based membranes preparation, performance and prospects. Stud Surf Sci Catal 102:413–454

    Article  CAS  Google Scholar 

  3. Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11(12):975–996

    Article  CAS  Google Scholar 

  4. Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes – state of their development and perspective. Microporous Mesoporous Mater 38(1):3–24

    Article  CAS  Google Scholar 

  5. Lin YS (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25(1–3):39–55

    Article  CAS  Google Scholar 

  6. Bowen TC, Noble RD, Falconer JL (2004) Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci 245(1–2):1–33

    Article  CAS  Google Scholar 

  7. McLeary EE, Jansen JC, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90(1–3):198–220

    Article  CAS  Google Scholar 

  8. Noack M, Kolsch P, Dittmar A, Stohr M, Georgi G, Schneider M, Dingerdissen U, Feldhoff A, Caro J (2007) Proof of the ISS-concept for LTA and FAU membranes and their characterization by extended gas permeation studies. Microporous Mesoporous Mater 102(1–3):1–20

    Article  CAS  Google Scholar 

  9. Snyder MA, Tsapatsis M (2007) Hierarchical nanomanufacturing: from shaped zeolite nanoparticles to high-performance separation membranes. Angew Chem Int Ed 46(40):7560–7573

    Article  CAS  Google Scholar 

  10. Caro J, Noack M (2008) Zeolite membranes – recent developments and progress. Microporous Mesoporous Mater 115(3):215–233

    Article  CAS  Google Scholar 

  11. Wee SL, Tye CT, Bhatia S (2008) Membrane separation process-pervaporation through zeolite membrane. Sep Purif Technol 63(3):500–516

    Article  CAS  Google Scholar 

  12. Li YS, Yang WS (2008) Microwave synthesis of zeolite membranes: a review. J Membr Sci 316(1–2):3–17

    Article  CAS  Google Scholar 

  13. Daramola MO, Burger AJ, Pera-Titus M, Giroir-Fendler A, Miachon S, Dalmon JA, Lorenzen L (2010) Separation and isomerization of xylenes using zeolite membranes: a short overview. Asia Pac J Chem Eng 5(6):815–837

    Article  CAS  Google Scholar 

  14. Lew CM, Cai R, Yan YS (2010) Zeolite thin films: from computer chips to space stations. Acc Chem Res 43(2):210–219. doi:10.1021/Ar900146w

    Article  CAS  Google Scholar 

  15. Paul DR, Kemp DR (1973) Diffusion time lag in polymer membranes containing adsorptive fillers. J Polym Sci Polym Symp 41:79–93

    Article  Google Scholar 

  16. Kulprathipanja S, Neuzil RW, Li NN (1988) Separation of fluids by means of mixed matrix membranes. US Patent 4740219

    Google Scholar 

  17. Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32(4):483–507

    Article  CAS  Google Scholar 

  18. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75(3):229–242. doi:10.1016/j.seppur.2010.08.023

    Article  CAS  Google Scholar 

  19. Bastani D, Esmaeili N, Asadollahi M (2013) Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J Ind Eng Chem 19(2):375–393

    Article  CAS  Google Scholar 

  20. Sakai H, Tomita T, Takahashi T (2001) p-xylene separation with MFI-type zeolite membrane. Sep Purif Technol 25(1–3):297–306. doi:10.1016/S1383-5866(01)00056-9

    Article  CAS  Google Scholar 

  21. Kiyozumi Y, Nagase T, Hasegawa Y, Mizukami F (2008) A process for synthesizing bilayer zeolite membranes. Mater Lett 62(3):436–439. doi:10.1016/j.matlet.2007.05.067

    Article  CAS  Google Scholar 

  22. He Y, Cui XM, Liu XD, Wang YP, Zhang J, Liu K (2013) Preparation of self-supporting NaA zeolite membranes using geopolymers. J Membr Sci 447:66–72

    Article  CAS  Google Scholar 

  23. Zhang J, He Y, Wang YP, Mao J, Cui XM (2014) Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture. Mater Lett 116:167–170. doi:10.1016/j.matlet.2013.11.008

    Article  CAS  Google Scholar 

  24. Jung KT, Shul YG (1997) Preparation of transparent TS-1 zeolite film by using nanosized TS-1 particles. Chem Mater 9(2):420–422

    Article  CAS  Google Scholar 

  25. Wang ZB, Mitra AP, Wang HT, Huang LM, Yan YS (2001) Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspensions. Adv Mater 13(19):1463–1466. Doi::10.1002/1521-4095(200110)13:19<1463::Aid-Adma1463>3.0.Co;2-H

  26. Wang ZB, Yan YS (2001) Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem Mater 13(3):1101–1107. doi:10.1021/Cm000849e

    Article  CAS  Google Scholar 

  27. Wang ZB, Yan YS (2001) Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Microporous Mesoporous Mater 48(1–3):229–238. doi:10.1016/S1387-1811(01)00357-2

    Article  CAS  Google Scholar 

  28. Zhu MH, Kumakiri I, Tanaka K, Kita H (2013) Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane. Microporous Mesoporous Mater 181:47–53

    Article  CAS  Google Scholar 

  29. Wang ZB, Ge QQ, Shao J, Yan YS (2009) High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc 131(20):6910–6911

    Article  CAS  Google Scholar 

  30. Wang ZB, Ge QQ, Gao JS, Shao J, Liu CJ, Yan YS (2011) High-performance zeolite membranes on inexpensive large-pore supports: highly reproducible synthesis using a seed paste. ChemSusChem 4(11):1570–1573

    Article  CAS  Google Scholar 

  31. Wang XR, Chen YY, Zhang C, Gu XH, Xu NP (2014) Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers. J Membr Sci 455:294–304

    Article  CAS  Google Scholar 

  32. Zhang F, Zheng YH, Hua LL, Hu N, Zhu MH, Zhou RF, Chen XS, Kita H (2014) Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media. J Membr Sci 456:107–116

    Article  CAS  Google Scholar 

  33. Gao X, Zou XQ, Zhang F, Zhang SX, Ma HP, Zhao NA, Zhu GS (2013) Eco-friendly fabrication of hydrophilic ZSM-5 membranes for alcohol upgrading. Chem Commun 49(78):8839–8841

    Article  CAS  Google Scholar 

  34. Ge QQ, Wang ZB, Yan YS (2009) High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J Am Chem Soc 131(47):17056–17057

    Article  CAS  Google Scholar 

  35. Yin XJ, Zhu GS, Yang WS, Li YS, Zhu GQ, Xu R, Sun JY, Qiu SL, Xu RR (2005) Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen. Adv Mater 17(16):2006–2010. doi:10.1002/adma.200500270

    Article  CAS  Google Scholar 

  36. Wang ZY, Yin XJ, Yue NL, Sun FX, Zhu GS (2011) Preparation and characterization of X-type zeolite membrane supported by stainless steel net. Chem J Chin Univ 32(10):2250–2255

    CAS  Google Scholar 

  37. Zou XQ, Zhu GS, Guo HL, Jing XF, Xu D, Qiu SL (2009) Effective heavy metal removal through porous stainless-steel-net supported low siliceous zeolite ZSM-5 membrane. Microporous Mesoporous Mater 124(1–3):70–75

    Article  CAS  Google Scholar 

  38. Chen YL, Zhu GS, Peng Y, Qiu SL (2008) Stainless-steel net supported ITQ-17 membrane potential for microlaser application. In: Zeolites and related materials: trends, targets and challenges. Proceedings of the 4th International Feza Conference 174:661–664

    Google Scholar 

  39. Liu W, Zhang J, Canfield N, Saraf L (2011) Preparation of robust, thin zeolite membrane sheet for molecular separation. Ind Eng Chem Res 50(20):11677–11689. doi:10.1021/Ie200519b

    Article  CAS  Google Scholar 

  40. Zhang J, Liu W (2011) Thin porous metal sheet-supported NaA zeolite membrane for water/ethanol separation. J Membr Sci 371(1–2):197–210

    Article  CAS  Google Scholar 

  41. Huang AS, Wang NY, Caro J (2012) Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous Mesoporous Mater 164:294–301

    Article  CAS  Google Scholar 

  42. Wang HB, Lin YS (2012) Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J Membr Sci 396:128–137

    Article  CAS  Google Scholar 

  43. Wang HB, Dong XL, Lin YS (2014) Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J Membr Sci 450:425–432

    Article  CAS  Google Scholar 

  44. Jansen JC, Vanrosmalen GM (1993) Oriented growth of silica molecular-sieve crystals as supported films. J Cryst Growth 128(1–4):1150–1156. doi:10.1016/S0022-0248(07)80114-X

    Article  CAS  Google Scholar 

  45. Li XM, Yan YS, Wang ZB (2010) Continuity control of b-oriented MFI zeolite films by microwave synthesis. Ind Eng Chem Res 49(12):5933–5938

    Article  CAS  Google Scholar 

  46. Wang XD, Zhang BQ, Liu XF, Lin JYS (2006) Synthesis of b-oriented TS-1 films on chitosan-modified alpha-Al2O3 substrates. Adv Mater 18(24):3261–3265. doi:10.1002/adma.200502772

    Article  CAS  Google Scholar 

  47. Lai ZP, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300(5618):456–460. doi:10.1126/science.1082169

    CAS  Google Scholar 

  48. Tung CTP, Kim HS, Yoon KB (2011) Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334(6062):1533–1538. doi:10.1126/science.1212472

    Article  CAS  Google Scholar 

  49. Kim E, Choi J, Tsapatsis M (2013) On defects in highly a-oriented MFI membranes. Microporous Mesoporous Mater 170:1–8. doi:10.1016/j.micromeso.2012.11.023

    Article  CAS  Google Scholar 

  50. Choi J, Ghosh S, Lai ZP, Tsapatsis M (2006) Uniformly a-oriented MFI zeolite films by secondary growth. Angew Chem Int Ed 45(7):1154–1158. doi:10.1002/anie.200503011

    Article  CAS  Google Scholar 

  51. Lee T, Choi J, Tsapatsis M (2013) On the performance of c-oriented MFI zeolite membranes treated by rapid thermal processing. J Membr Sci 436:79–89

    Article  CAS  Google Scholar 

  52. Bons AJ, Bons PD (2003) The development of oblique preferred orientations in zeolite films and membranes. Microporous Mesoporous Mater 62(1–2):9–16. doi:10.1016/S1387-1811(03)00384-6

    Article  CAS  Google Scholar 

  53. Liu Y, Li YS, Yang WS (2010) Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth. J Am Chem Soc 132(6):1768–1769

    Article  CAS  Google Scholar 

  54. Liu Y, Li YS, Cai R, Yang WS (2012) Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation. Chem Commun 48(54):6782–6784. doi:10.1039/C2cc18111h

    Article  CAS  Google Scholar 

  55. Li XM, Peng Y, Wang ZB, Yan YS (2011) Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth. CrystEngComm 13(11):3657–3660

    Article  CAS  Google Scholar 

  56. Sano T, Hasegawa M, Kawakami Y, Kiyozumi Y, Yanagishita H, Kitamoto D, Mizukami F (1994) Potentials of silicalite membranes for the separation of alcohol-water mixtures. Stud Surf Sci Catal 84:1175–1182

    Article  CAS  Google Scholar 

  57. Yan YS, Davis ME, Gavalas GR (1995) Preparation of zeolite Zsm-5 membranes by in-situ crystallization on porous alpha-Al2O3. Ind Eng Chem Res 34(5):1652–1661. doi:10.1021/Ie00044a018

    Google Scholar 

  58. Zah J, Krieg HM, Breytenbach JC (2006) Layer development and growth history of polycrystalline zeolite A membranes synthesised from a clear solution. Microporous Mesoporous Mater 93(1–3):141–150. doi:10.1016/j.micromeso.2006.02.014

    Article  CAS  Google Scholar 

  59. Okamoto K, Kita H, Horii K, Tanaka K, Kondo M (2001) Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind Eng Chem Res 40(1):163–175

    Article  CAS  Google Scholar 

  60. Xu XC, Yang WS, Liu J, Lin LW (2001) Synthesis of NaA zeolite membranes from clear solution. Microporous Mesoporous Mater 43(3):299–311

    Article  CAS  Google Scholar 

  61. Li HZ, Wang JQ, Xu J, Meng XD, Xu B, Yang JH, Li SY, Lu JM, Zhang Y, He XL, Yin DH (2013) Synthesis of zeolite NaA membranes with high performance and high reproducibility on coarse macroporous supports. J Membr Sci 444:513–522

    Article  CAS  Google Scholar 

  62. Xomeritakis G, Gouzinis A, Nair S, Okubo T, He MY, Overney RM, Tsapatsis M (1999) Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth. Chem Eng Sci 54(15–16):3521–3531. doi:10.1016/S0009-2509(98)00515-6

    Article  CAS  Google Scholar 

  63. Hedlund J, Noack M, Kolsch P, Creaser D, Caro J, Sterte J (1999) ZSM-5 membranes synthesized without organic templates using a seeding technique. J Membr Sci 159(1–2):263–273. doi:10.1016/S0376-7388(99)00069-1

    Article  CAS  Google Scholar 

  64. Mintova S, Hedlund J, Valtchev V, Schoeman BJ, Sterte J (1998) ZSM-5 films prepared from template free precursors. J Mater Chem 8(10):2217–2221. doi:10.1039/A803687j

    Article  CAS  Google Scholar 

  65. Huang AS, Liu Q, Wang NY, Tong X, Huang BX, Wang M, Caro J (2013) Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports. J Membr Sci 437:57–64

    Article  CAS  Google Scholar 

  66. Huang AS, Liang FY, Steinbach F, Caro J (2010) Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J Membr Sci 350(1–2):5–9

    Article  CAS  Google Scholar 

  67. Yoon KB (2007) Organization of zeolite microcrystals for production of functional materials. Acc Chem Res 40(1):29–40. doi:10.1021/Ar000119c

    Article  CAS  Google Scholar 

  68. Kuzniatsova T, Kim Y, Shqau K, Dutta PK, Verweij H (2007) Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater 103(1–3):102–107. doi:10.1016/j.micromeso.2007.01.042

    Article  CAS  Google Scholar 

  69. Pina MP, Arruebo M, Felipe A, Fleta F, Bernal MP, Coronas J, Menendez M, Santamaria J (2004) A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. J Membr Sci 244(1–2):141–150

    Article  CAS  Google Scholar 

  70. Huang AS, Lin YS, Yang WS (2004) Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding. J Membr Sci 245(1–2):41–51. doi:10.1016/j.memsci.2004.08.001

    Article  CAS  Google Scholar 

  71. Algieri C, Bernardo P, Barbieri G, Drioli E (2009) A novel seeding procedure for preparing tubular NaY zeolite membranes. Microporous Mesoporous Mater 119(1–3):129–136

    Article  CAS  Google Scholar 

  72. Peng Y, Zhan ZY, Shan LJ, Li XM, Wang ZB, Yan YS (2013) Preparation of zeolite MFI membranes on defective macroporous alumina supports by a novel wetting-rubbing seeding method: role of wetting agent. J Membr Sci 444:60–69

    Article  CAS  Google Scholar 

  73. Zampieri A, Dubbe A, Schwieger W, Avhale A, Moos R (2008) ZSM-5 zeolite films on Si substrates grown by in situ seeding and secondary crystal growth and application in an electrochemical hydrocarbon gas sensor. Microporous Mesoporous Mater 111(1–3):530–535. doi:10.1016/j.micromeso.2007.08.026

    Article  CAS  Google Scholar 

  74. Dong JX, Dou T, Zhao XG, Gao LH (1992) Synthesis of membranes of zeolites Zsm-5 and Zsm-35 by the vapor-phase method. J Chem Soc Chem Commun 15:1056–1058

    Article  Google Scholar 

  75. Nishiyama N, Matsufuji T, Ueyama K, Matsukata M (1997) FER membrane synthesized by a vapor-phase transport method: its structure and separation characteristics. Microporous Mater 12(4–6):293–303

    Article  Google Scholar 

  76. Nishiyama N, Ueyama K, Matsukata M (1996) Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method. Microporous Mater 7(6):299–308

    Article  CAS  Google Scholar 

  77. Cheng ZL, Chao ZS, Lin HQ, Wan HL (2003) NaA zeolite membrane with high performance synthesized by vapor phase transformation method. Chin J Chem 21(11):1430–1432

    Article  CAS  Google Scholar 

  78. Xu XC, Bao Y, Song CS, Yang WS, Liu J, Lin LW (2004) Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater 75(3):173–181

    Article  CAS  Google Scholar 

  79. Chen XB, Yang WS, Liu J, Lin LW (2005) Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation. J Membr Sci 255(1–2):201–211

    Article  CAS  Google Scholar 

  80. Li YS, Chen HL, Liu J, Yang WS (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277(1–2):230–239. doi:10.1016/j.memsci.2005.10.033

    Article  CAS  Google Scholar 

  81. Tang Z, Kim SJ, Gu XH, Dong JH (2009) Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents. Microporous Mesoporous Mater 118(1–3):224–231. doi:10.1016/j.micromeso.2008.08.029

    Article  CAS  Google Scholar 

  82. Zhou H, Li YS, Zhu GQ, Liu J, Yang WS (2009) Preparation of zeolite T membranes by microwave-assisted in situ nucleation and secondary growth. Mater Lett 63(2):255–257

    Article  CAS  Google Scholar 

  83. Cai R, Liu Y, Gu S, Yan YS (2010) Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating. J Am Chem Soc 132(37):12776–12777. doi:10.1021/Ja101649b

    Article  CAS  Google Scholar 

  84. Sebastian V, Mallada R, Coronas J, Julbe A, Terpstra RA, Dirrix RWJ (2010) Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite-ceramic membranes for pervaporation application. J Membr Sci 355(1–2):28–35

    Article  CAS  Google Scholar 

  85. Wang CZ, Liu XF, Li J, Zhang BQ (2013) Microwave-assisted seeded growth of the submicrometer-thick and pure b-oriented MFI zeolite films using an ultra-dilute synthesis solution. CrystEngComm 15(32):6301–6304. doi:10.1039/C3ce40644j

    Article  CAS  Google Scholar 

  86. Noack M, Kolsch P, Dittmar A, Stohr M, Georgi G, Eckelt R, Caro J (2006) Effect of crystal intergrowth supporting substances (ISS) on the permeation properties of MFI membranes with enhanced Al-content. Microporous Mesoporous Mater 97(1–3):88–96

    Article  CAS  Google Scholar 

  87. Huang AS, Wang NY, Caro J (2012) Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. J Membr Sci 389:272–279

    Article  CAS  Google Scholar 

  88. Huang BX, Liu Q, Caro J, Huang AS (2014) Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3-aminopropyltriethoxysilane-modified alumina tubes. J Membr Sci 455:200–206

    Article  CAS  Google Scholar 

  89. Huang AS, Caro J (2011) Facile synthesis of LTA molecular sieve membranes on covalently functionalized supports by using diisocyanates as molecular linkers. J Mater Chem 21(30):11424–11429

    Article  CAS  Google Scholar 

  90. Huang AS, Bux H, Steinbach F, Caro J (2010) Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew Chem Int Ed 49(29):4958–4961. doi:10.1002/anie.201001919

    Article  CAS  Google Scholar 

  91. Pera-Titus M, Llorens J, Cunill F, Mallada R, Santamaria J (2005) Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. Catal Today 104(2–4):281–287. doi:10.1016/j.cattod.2005.03.042

    Article  CAS  Google Scholar 

  92. Pera-Titus M, Mallada R, Llorens J, Cunill F, Santamaria J (2006) Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J Membr Sci 278(1–2):401–409. doi:10.1016/j.memsci.2005.11.026

    Article  CAS  Google Scholar 

  93. Tiscareno-Lechuga F, Tellez C, Menendez M, Santamaria J (2003) A novel device for preparing zeolite – a membranes under a centrifugal force field. J Membr Sci 212(1–2):135–146. doi: 10.1016/S0376-7388(02)00491-X

    Google Scholar 

  94. Pera-Titus M, Bausach M, Llorens J, Cunill F (2008) Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep Purif Technol 59(2):141–150. doi:10.1016/j.seppur.2007.05.038

    Article  CAS  Google Scholar 

  95. Lai LL, Shao J, Ge QQ, Wang ZB, Yan YS (2012) The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. J Membr Sci 409:318–328

    Article  CAS  Google Scholar 

  96. Wang L, Wang Y, Hao JG, Liu GZ, Ma XS, Hu SL (2013) Synthesis of HZSM-5 coatings on the inner surface of stainless steel tubes and their catalytic performance in n-dodecane cracking. Appl Catal Gen 462:271–277

    Article  CAS  Google Scholar 

  97. Tosheva L, Holzl M, Metzger TH, Valtchev V, Mintova S, Bein T (2005) Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Mater Sci Eng C Bio S 25(5–8):570–576. doi:10.1016/j.msec.2005.07.011

    Article  CAS  Google Scholar 

  98. Chen YL, Zhu GS, Peng Y, Yao XD, Qiu SL (2009) Synthesis and characterization of (h0l) oriented high-silica zeolite beta membrane. Microporous Mesoporous Mater 124(1–3):8–14. doi:10.1016/j.micromeso.2009.04.012

    Article  CAS  Google Scholar 

  99. Gualtieri ML, Gualtieri AF, Prudenziati M (2008) Seeded growth of TPA-MFI films using the fluoride route. Microporous Mesoporous Mater 111(1–3):604–611. doi:10.1016/j.micromeso.2007.09.006

    Article  CAS  Google Scholar 

  100. Gualtieri ML (2009) Synthesis of MFI films on alpha-alumina at neutral pH. Microporous Mesoporous Mater 117(1–2):508–510. doi:10.1016/j.micromeso.2008.07.022

    Article  CAS  Google Scholar 

  101. Zhang XL, Zhu MH, Zhou RF, Chen XS, Kita H (2011) Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride. Sep Purif Technol 81(3):480–484

    Article  CAS  Google Scholar 

  102. Zhu MH, Lu ZH, Kumakiri I, Tanaka K, Chen XS, Kita H (2012) Preparation and characterization of high water perm-selectivity ZSM-5 membrane without organic template. J Membr Sci 415:57–65

    Article  CAS  Google Scholar 

  103. Ren XX, Yang JH, Chen Z, Yang XB, Lu JM, Zhang Y, Wang JQ (2012) Preparation and performance of mordenite zeolite membrane using fluoride route. Chin J Catal 33(9):1558–1564

    CAS  Google Scholar 

  104. Zhou RF, Hu ZL, Hu N, Duan LQ, Chen XS, Kita H (2012) Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media. Microporous Mesoporous Mater 156:166–170

    Article  CAS  Google Scholar 

  105. Chen Z, Li YH, Yin DH, Song YM, Ren XX, Lu JM, Yang JH, Wang JQ (2012) Microstructural optimization of mordenite membrane for pervaporation dehydration of acetic acid. J Membr Sci 411:182–192

    Article  CAS  Google Scholar 

  106. Zhou M, Korelskiy D, Ye PC, Grahn M, Hedlund J (2014) A uniformly oriented MFI membrane for improved CO2 separation. Angew Chem Int Ed 53(13):3492–3495

    Article  CAS  Google Scholar 

  107. Li YS, Zhang XF, Wang JQ (2001) Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis. Sep Purif Technol 25(1–3):459–466

    Article  CAS  Google Scholar 

  108. Kong CL, Lu JM, Yang JH, Wang JQ (2006) Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis. J Membr Sci 285(1–2):258–264. doi:10.1016/j.memsci.2006.08.027

    Article  CAS  Google Scholar 

  109. Wang ZZ, Kumakiri I, Tanaka K, Chen XS, Kita H (2013) NaY zeolite membranes with high performance prepared by a variable-temperature synthesis. Microporous Mesoporous Mater 182:250–258

    Article  CAS  Google Scholar 

  110. Hedlund J, Jareman F, Bons AJ, Anthonis M (2003) A masking technique for high quality MFI membranes. J Membr Sci 222(1–2):163–179. doi:10.1016/S0376-7388(03)00285-0

    Article  CAS  Google Scholar 

  111. Chen HL, Li YS, Zhu GQ, Liu JE, Yang WS (2008) Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes. Chin Sci Bull 53(22):3505–3510

    CAS  Google Scholar 

  112. Chen HL, Li YS, Zhu GQ, Yang WS (2009) Synthesis and separation performance of silicalite-1 membranes on silica tubes. Sci China B 52(5):579–583

    Article  CAS  Google Scholar 

  113. Xiao W, Yang JH, Lu JM, Wang JQ (2009) Preparation and characterization of silicalite-1 membrane by counter-diffusion secondary growth. J Membr Sci 345(1–2):183–190

    Article  CAS  Google Scholar 

  114. Yin HM, Yang JH, Xie Z, Wang JQ, Lu JM, Zhang Y (2014) Deposition of functional modified inorganic particles on a macroporous tube for synthesis ZIF-7 membrane by counter diffusion method. J Inorg Mater 29(4):377–381. doi:10.3724/Sp.J.1077.2014.13355

    CAS  Google Scholar 

  115. Miachon S, Landrivon E, Aouine M, Sun Y, Kumakiri I, Li Y, Prokopova OP, Guilhaume N, Giroir-Fendler A, Mozzanega H, Dalmon JA (2006) Nanocomposite MFI-alumina membranes via pore-plugging synthesis – preparation and morphological characterisation. J Membr Sci 281(1–2):228–238. doi:10.1016/j.memsci.2006.03.036

    Article  CAS  Google Scholar 

  116. Miachon S, Ciavarella P, van Dyk L, Kumakiri I, Fiaty K, Schuurman Y, Dalmon JA (2007) Nanocomposite MFI-alumina membranes via pore-plugging synthesis: specific transport and separation properties. J Membr Sci 298(1–2):71–79

    Article  CAS  Google Scholar 

  117. Alshebani A, Pera-Titus M, Landrivon E, Schiestel T, Miachon S, Dalmon JA (2008) Nanocomposite MFI – ceramic hollow fibres: prospects for CO2 separation. Microporous Mesoporous Mater 115(1–2):197–205

    Article  CAS  Google Scholar 

  118. Rouleau L, Pirngruber G, Guillou F, Barrere-Tricca C, Omegna A, Valtchev V, Pera-Titus M, Miachon S, Dalmon JA (2009) Nanocomposite MFI-alumina and FAU-alumina membranes: synthesis, characterization and application to paraffin separation and CO2 capture. Oil Gas Sci Technol 64(6):745–758. doi:10.2516/Ogst/2009036

    Article  CAS  Google Scholar 

  119. Sublet J, Pera-Titus M, Guilhaume N, Farrusseng D, Schrive L, Chanaud P, Siret B, Durecu S (2012) Technico-economical assessment of MFI-type zeolite membranes for CO2 capture from postcombustion flue gases. AIChE J 58(10):3183–3194

    Article  CAS  Google Scholar 

  120. Daramola MO, Burger AJ, Pera-Titus M, Giroir-Fendler A, Miachon S, Lorenzen L, Dalmon JA (2009) Nanocomposite MFI-ceramic hollow fibre membranes via pore-plugging synthesis: prospects for xylene isomer separation. J Membr Sci 337(1–2):106–112

    Article  CAS  Google Scholar 

  121. Ciavarella P, Moueddeb H, Miachon S, Fiaty K, Dalmon JA (2000) Experimental study and numerical simulation of hydrogen/isobutane permeation and separation using MFI-zeolite membrane reactor. Catal Today 56(1–3):253–264

    Article  CAS  Google Scholar 

  122. Shao J, Zhan ZY, Li JG, Wang ZB, Li K, Yan YS (2014) Zeolite NaA membranes supported on alumina hollow fibers: effect of support resistances on pervaporation performance. J Membr Sci 451:10–17

    Article  CAS  Google Scholar 

  123. Kita H, Fuchida K, Horita T, Asamura H, Okamoto K (2001) Preparation of Faujasite membranes and their permeation properties. Sep Purif Technol 25(1–3):261–268

    Article  CAS  Google Scholar 

  124. Sato K, Sugimoto K, Nakane T (2008) Synthesis of industrial scale NaY zeolite membranes and ethanol permeating performance in pervaporation and vapor permeation up to 130 degrees C and 570 kPa. J Membr Sci 310(1–2):161–173

    Article  CAS  Google Scholar 

  125. Chen XX, Wang JQ, Yin DH, Yang JH, Lu JM, Zhang Y, Chen Z (2013) High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method. AIChE J 59(3):936–947

    Article  CAS  Google Scholar 

  126. Li XS, Kita H, Zhu H, Zhang ZJ, Tanaka K, Okamoto K (2011) Influence of the hydrothermal synthetic parameters on the pervaporative separation performances of CHA-type zeolite membranes. Microporous Mesoporous Mater 143(2–3):270–276

    Article  CAS  Google Scholar 

  127. Kondo M, Komori M, Kita H, Okamoto K (1997) Tubular-type pervaporation module with zeolite NaA membrane. J Membr Sci 133(1):133–141

    Article  CAS  Google Scholar 

  128. Sato K, Nakane T (2007) A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane. J Membr Sci 301(1–2):151–161

    Article  CAS  Google Scholar 

  129. Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K (2001) Application of zeolite membranes to esterification reactions. Catal Today 67(1–3):121–125

    Article  CAS  Google Scholar 

  130. Zhou RF, Zhang F, Hu N, Chen XS, Kita H (2011) Fast preparation of high-performance zeolite T membranes in fluoride media. Chem Lett 40(12):1383–1385

    Article  CAS  Google Scholar 

  131. Shafiei K, Pakdehi SG, Moghaddam MK, Mohammadi T (2014) Improvement of zeolite T membrane via clear solution gel in dehydration of methanol, ethanol, and 2-propanol. Sep Sci Technol 49(6):797–802

    Article  CAS  Google Scholar 

  132. Zhou RF, Hu LL, Zhang YJ, Hu N, Chen XS, Lin X, Kita H (2013) Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties. Microporous Mesoporous Mater 174:81–89

    Article  CAS  Google Scholar 

  133. Zhang XL, Song X, Qiu LF, Ding MZ, Hu N, Zhou RF, Chen XS (2013) Synthesis and pervaporation performance of highly reproducible zeolite T membranes from clear solutions. Chin J Catal 34(3):542–547

    Article  CAS  Google Scholar 

  134. Zhang XL, Qiu LF, Ding MZ, Hu N, Zhang F, Zhou RF, Chen XS, Kita H (2013) Preparation of zeolite T membranes by a two-step temperature process for CO2 separation. Ind Eng Chem Res 52(46):16364–16374

    Article  CAS  Google Scholar 

  135. Zhang XL, Song X, Qiu LF, Zhou RF, Chen XS (2012) Preparation of high performance zeolite T membranes by a two-stage temperature-varied synthesis with microsized seeds. Chin J Inorg Chem 28(9):1914–1918

    CAS  Google Scholar 

  136. Zhou H, Li YS, Zhu GQ, Liu J, Yang WS (2009) Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties. Sep Purif Technol 65(2):164–172

    Article  CAS  Google Scholar 

  137. Zhou H, Li YS, Zhu GQ, Liu J, Lin LW, Yang WS (2008) Microwave synthesis of a&b-oriented zeolite T membranes and their application in pervaporation-assisted esterification. Chin J Catal 29(7):592–594. doi:10.1016/S1872-2067(08)60059-5

    Article  CAS  Google Scholar 

  138. Huang AS, Yang WS (2007) Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating. Mater Lett 61(29):5129–5132. doi:10.1016/j.matlet.2007.04.017

    Article  CAS  Google Scholar 

  139. Yu CL, Zhong C, Liu YM, Gu XH, Yang G, Xing WH, Xu NP (2012) Pervaporation dehydration of ethylene glycol by NaA zeolite membranes. Chem Eng Res Des 90(9):1372–1380

    Article  CAS  Google Scholar 

  140. Shahrestani MM, Moheb A, Ghiaci M (2013) High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method. Vacuum 92:70–76

    Article  CAS  Google Scholar 

  141. Yang GH, Zhang XF, Liu SQ, Yeung KL, Wang JQ (2007) A novel method for the assembly of nano-zeolite crystals on porous stainless steel microchannel and then zeolite film growth. J Phys Chem Solids 68(1):26–31. doi:10.1016/j.jpcs.2006.09.009

    Article  CAS  Google Scholar 

  142. Cui Y, Kita H, Okamoto KI (2004) Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability. J Membr Sci 236(1):17–27

    Article  CAS  Google Scholar 

  143. Sano T, Yanagishita H, Kiyozumi Y, Mizukami F, Haraya K (1994) Separation of ethanol-water mixture by silicalite membrane on pervaporation. J Membr Sci 95(3):221–228. doi:10.1016/0376-7388(94)00120-0

    Article  CAS  Google Scholar 

  144. Chen HL, Li YS, Yang WS (2007) Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties. J Membr Sci 296(1–2):122–130

    Article  CAS  Google Scholar 

  145. Lin X, Chen XS, Kita H, Okamoto K (2003) Synthesis of silicalite tubular membranes by in situ crystallization. AIChE J 49(1):237–247

    Article  CAS  Google Scholar 

  146. Shan LJ, Shao J, Wang ZB, Yan YS (2011) Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation. J Membr Sci 378(1–2):319–329

    Article  CAS  Google Scholar 

  147. Shu XJ, Wang XR, Kong QQ, Gu XH, Xu NP (2012) High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water. Ind Eng Chem Res 51(37):12073–12080

    Article  CAS  Google Scholar 

  148. Lin X, Kita H, Okamoto K (2000) A novel method for the synthesis of high performance silicalite membranes. Chem Commun 19:1889–1890

    Article  Google Scholar 

  149. Lin X, Kita H, Okamoto K (2001) Silicalite membrane preparation, characterization, and separation performance. Ind Eng Chem Res 40(19):4069–4078

    Article  CAS  Google Scholar 

  150. Shen D, Xiao W, Yang JH, Chu NB, Lu JM, Yin DH, Wang JQ (2011) Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance. Sep Purif Technol 76(3):308–315

    Article  CAS  Google Scholar 

  151. Zou XQ, Bazin P, Zhang F, Zhu GS, Valtchev V, Mintova S (2012) Ethanol recovery from water using silicalite-1 membrane: an operando infrared spectroscopic study. ChemPlusChem 77(6):437–444

    Article  CAS  Google Scholar 

  152. Yuan WH, Lin YS, Yang WS (2004) Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. J Am Chem Soc 126(15):4776–4777

    Article  CAS  Google Scholar 

  153. Xomeritakis G, Lai ZP, Tsapatsis M (2001) Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth. Ind Eng Chem Res 40(2):544–552. doi:10.1021/Ie000613k

    Article  CAS  Google Scholar 

  154. Nair S, Lai ZP, Nikolakis V, Xomeritakis G, Bonilla G, Tsapatsis M (2001) Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous Mesoporous Mater 48(1–3):219–228. doi:10.1016/S1387-1811(01)00356-0

    Article  CAS  Google Scholar 

  155. Gu XH, Dong JH, Nenoff TM, Ozokwelu DE (2006) Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite membranes. J Membr Sci 280(1–2):624–633

    Article  CAS  Google Scholar 

  156. Stoeger JA, Choi J, Tsapatsis M (2011) Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes. Energy Environ Sci 4(9):3479–3486

    Article  CAS  Google Scholar 

  157. Yoo WC, Stoeger JA, Lee PS, Tsapatsis M, Stein A (2010) High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing. Angew Chem Int Ed 49(46):8699–8703

    Article  CAS  Google Scholar 

  158. Choi J, Jeong HK, Snyder MA, Stoeger JA, Masel RI, Tsapatsis M (2009) Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science 325(5940):590–593. doi:10.1126/science.1176095

    Article  CAS  Google Scholar 

  159. O’Brien-Abraham J, Kanezashi M, Lin YS (2008) Effects of adsorption-induced microstructural changes on separation of xylene isomers through MFI-type zeolite membranes. J Membr Sci 320(1–2):505–513

    Article  CAS  Google Scholar 

  160. O’Brien-Abraham J, Kanezashi M, Lin YS (2007) A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes. Microporous Mesoporous Mater 105(1–2):140–148. doi:10.1016/j.micromeso.2007.05.045

    Article  CAS  Google Scholar 

  161. Hong M, Falconer JL, Noble RD (2005) Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Ind Eng Chem Res 44(11):4035–4041. doi:10.1021/Ie048739v

    Article  CAS  Google Scholar 

  162. Wang HB, Lin YS (2011) Effects of synthesis conditions on MFI zeolite membrane quality and catalytic cracking deposition modification results. Microporous Mesoporous Mater 142(2–3):481–488

    Article  CAS  Google Scholar 

  163. Gu XH, Tang Z, Dong JH (2008) On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature. Microporous Mesoporous Mater 111(1–3):441–448

    Article  CAS  Google Scholar 

  164. Hong Z, Sun F, Chen DD, Zhang C, Gu XH, Xu NP (2013) Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. Int J Hydrog Energy 38(20):8409–8414

    Article  CAS  Google Scholar 

  165. Jabbari Z, Fatemi S, Davoodpour M (2014) Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication. Adv Powder Technol 25(1):321–330. doi:10.1016/j.apt.2013.05.011

    Article  CAS  Google Scholar 

  166. Funke HH, Chen MZ, Prakash AN, Falconer JL, Noble RD (2014) Separating molecules by size in SAPO-34 membranes. J Membr Sci 456:185–191

    Article  CAS  Google Scholar 

  167. Hong M, Li SG, Falconer JL, Noble RD (2008) Hydrogen purification using a SAPO-34 membrane. J Membr Sci 307(2):277–283

    Article  CAS  Google Scholar 

  168. van den Bergh J, Mittelmeijer-Hazeleger M, Kapteijn F (2010) Modeling permeation of CO2/CH4, N2/CH4, and CO2/air mixtures across a DD3R zeolite membrane. J Phys Chem C 114(20):9379–9389

    Article  CAS  Google Scholar 

  169. Kanezashi M, O’Brien-Abraham J, Lin YS, Suzuki K (2008) Gas permeation through DDR-type zeolite membranes at high temperatures. AIChE J 54(6):1478–1486

    Article  CAS  Google Scholar 

  170. Hasegawa Y, Tanaka T, Watanabe K, Jeong BH, Kusakabe K, Morooka S (2002) Separation of CO2-CH4 and CO2-N2 systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios. Korean J Chem Eng 19(2):309–313

    Article  CAS  Google Scholar 

  171. Guo HL, Zhu GS, Li H, Zou XQ, Yin XJ, Yang WS, Qiu SL, Xu R (2006) Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2. Angew Chem Int Ed 45(42):7053–7056. doi:10.1002/anie.200602308

    Article  CAS  Google Scholar 

  172. Cui Y, Kita H, Okamoto K (2004) Preparation and gas separation performance of zeolite T membrane. J Mater Chem 14(5):924–932

    Article  CAS  Google Scholar 

  173. Zhu WD, Hrabanek P, Gora L, Kapteijn F, Moulijn JA (2006) Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind Eng Chem Res 45(2):767–776

    Article  CAS  Google Scholar 

  174. Kusakabe K, Kuroda T, Murata A, Morooka S (1997) Formation of a Y-type zeolite membrane on a porous alpha-alumina tube for gas separation. Ind Eng Chem Res 36(3):649–655

    Article  CAS  Google Scholar 

  175. Kusakabe K, Kuroda T, Morooka S (1998) Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes. J Membr Sci 148(1):13–23

    Article  CAS  Google Scholar 

  176. Kusakabe K, Kuroda T, Uchino K, Hasegawa Y, Morooka S (1999) Gas permeation properties of ion-exchanged faujasite-type zeolite membranes. AIChE J 45(6):1220–1226

    Article  CAS  Google Scholar 

  177. Hasegawa Y, Kusakabe K, Morooka S (2001) Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube. Chem Eng Sci 56(14):4273–4281

    Article  CAS  Google Scholar 

  178. Cheng ZL, Gao EQ, Wan HL (2004) Novel synthesis of FAU-type zeolite membrane with high performance. Chem Commun 15:1718–1719

    Article  CAS  Google Scholar 

  179. White JC, Dutta PK, Shqau K, Verweij H (2010) Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases. Langmuir 26(12):10287–10293

    Article  CAS  Google Scholar 

  180. Lovallo MC, Gouzinis A, Tsapatsis M (1998) Synthesis and characterization of oriented MFI membranes prepared by secondary growth. AIChE J 44(8):1903–1913. doi:10.1002/aic.690440820

    Article  CAS  Google Scholar 

  181. Van Den Bergh J, Zhu WD, Kapteijn F, Moulijn JA, Yajima K, Nakayama K, Tomita T, Yoshida S (2008) Separation of CO2 annul CH4 lay a DDR membrane. Res Chem Intermed 34(5–7):467–474

    Article  Google Scholar 

  182. Li SG, Falconer JL, Noble RD (2008) SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio. Microporous Mesoporous Mater 110: 310–317

    Google Scholar 

  183. Chew TL, Ahmad AL, Bhatia S (2012) Microwave heating-synthesized zeolite membrane for CO2/CH4 separation. Desalin Water Treat 47(1–3):139–149

    Article  CAS  Google Scholar 

  184. Hong M, Li S, Funke HF, Falconer JL, Noble RD (2007) Ion-exchanged SAPO-34 membranes for light gas separations. Microporous Mesoporous Mater 106(1–3):140–146

    Article  CAS  Google Scholar 

  185. Zhou RF, Ping EW, Funke HH, Falconer JL, Noble RD (2013) Improving SAPO-34 membrane synthesis. J Membr Sci 444:384–393

    Article  CAS  Google Scholar 

  186. Ping EW, Zhou RF, Funke HH, Falconer JL, Noble RD (2012) Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J Membr Sci 415:770–775

    Article  CAS  Google Scholar 

  187. Funke HH, Tokay B, Zhou RF, Ping EW, Zhang YF, Falconer JL, Noble RD (2012) Spatially resolved gas permeation through SAPO-34 membranes. J Membr Sci 409:212–221

    Article  CAS  Google Scholar 

  188. Poshusta JC, Tuan VA, Pape EA, Noble RD, Falconer JL (2000) Separation of light gas mixtures using SAPO-34 membranes. AIChE J 46(4):779–789

    Article  CAS  Google Scholar 

  189. Wen Q, Di JC, Jiang L, Yu JH, Xu RR (2013) Zeolite-coated mesh film for efficient oil-water separation. Chem Sci 4(2):591–595

    Article  CAS  Google Scholar 

  190. Li LX, Dong JH, Nenoff TM, Lee R (2004) Desalination by reverse osmosis using MFI zeolite membranes. J Membr Sci 243(1–2):401–404

    Article  CAS  Google Scholar 

  191. van den Bergh J, Gucuyener C, Gascon J, Kapteijn F (2011) Isobutane dehydrogenation in a DD3R zeolite membrane reactor. Chem Eng J 166(1):368–377

    Article  CAS  Google Scholar 

  192. de la Iglesia O, Mallada R, Menendez M, Coronas J (2007) Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chem Eng J 131(1–3):35–39

    Article  CAS  Google Scholar 

  193. Hasegawa Y, Abe C, Mizukami F, Kowata Y, Hanaoka T (2012) Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst. J Membr Sci 415:368–374

    Article  CAS  Google Scholar 

  194. Bernal MP, Coronas J, Menendez M, Santamaria J (2002) Coupling of reaction and separation at the microscopic level: esterification processes in a H-ZSM-5 membrane reactor. Chem Eng Sci 57(9):1557–1562

    Article  CAS  Google Scholar 

  195. Zhang C, Hong Z, Chen JX, Gu XH, Jin WQ, Xu NP (2012) Catalytic MFI zeolite membranes supported on alpha-Al2O3 substrates for m-xylene isomerization. J Membr Sci 389:451–458

    Article  CAS  Google Scholar 

  196. Chen HH, Zhang HP, Yan Y (2013) Catalytic combustion of volatile organic compounds over a structured zeolite membrane reactor. Ind Eng Chem Res 52(36):12819–12826. doi:10.1021/Ie401882w

    Article  CAS  Google Scholar 

  197. Zhang YT, Wu ZJ, Hong Z, Gu XH, Xu NP (2012) Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem Eng J 197:314–321

    Article  CAS  Google Scholar 

  198. Tang Z, Kim SJ, Reddy GK, Dong JH, Smirniotis P (2010) Modified zeolite membrane reactor for high temperature water gas shift reaction. J Membr Sci 354(1–2):114–122

    Article  CAS  Google Scholar 

  199. Hong Z, Wu ZJ, Zhang YT, Gu XH (2013) Catalytic cracking deposition of methyldiethoxysilane for modification of zeolitic pores in MFI/alpha-Al2O3 zeolite membrane with H+ ion exchange pretreatment. Ind Eng Chem Res 52(36):13113–13119

    Article  CAS  Google Scholar 

  200. Rebrov EV, Seijger GBF, Calis HPA, de Croon MHJM, van den Bleek CM, Schouten JC (2001) The preparation of highly ordered single layer ZSM-5 coating on prefabricated stainless steel microchannels. Appl Catal Gen 206(1):125–143

    Article  CAS  Google Scholar 

  201. de la Iglesia O, Sebastian V, Mallada R, Nikolaidis G, Coronas J, Kolb G, Zapf R, Hessel V, Santamaria J (2007) Preparation of Pt/ZSM-5 films on stainless steel microreactors. Catal Today 125(1–2):2–10. doi:10.1016/j.cattod.2007.03.015

    Article  CAS  Google Scholar 

  202. Sebastian V, de la Iglesia O, Mallada R, Casado L, Kolb G, Hessel V, Santamaria J (2008) Preparation of zeolite films as catalytic coatings on microreactor channels. Microporous Mesoporous Mater 115(1–2):147–155. doi:10.1016/j.micromeso.2007.12.039

    Article  CAS  Google Scholar 

  203. Zamaro JM, Miro EE (2009) Confined growth of thin mordenite films into microreactor channels. Catal Commun 10(12):1574–1576. doi:10.1016/j.catcom.2009.04.017

    Article  CAS  Google Scholar 

  204. Mies MJM, Rebrov E, Jansen JC, Croon MHJM, Schouten JC (2007) Method for the in situ preparation of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications. J Catal 247(2):328–338. doi:10.1016/j.jcat.2007.02.007

    Article  CAS  Google Scholar 

  205. Navascues N, Escuin M, Rodas Y, Irusta S, Mallada R, Santamaria J (2010) Combustion of volatile organic compounds at trace concentration levels in zeolite-coated microreactors. Ind Eng Chem Res 49(15):6941–6947. doi:10.1021/Ie901843t

    Article  CAS  Google Scholar 

  206. Sebastian V, Irusta S, Mallada R, Santamaria J (2009) Microreactors with Pt/zeolite catalytic films for the selective oxidation of CO in simulated reformer streams. Catal Today 147:S10–S16. doi:10.1016/j.cattod.2009.07.061

    Article  CAS  Google Scholar 

  207. Lau WN, Yeung KL, Zhang XF, Martin-Aranda R (2007) Stud Surf Sci Catal 170:1460–1465

    Article  Google Scholar 

  208. Perez NC, Miro EE, Zamaro JM (2013) Cu, Ce/mordenite coatings on FeCrAl-alloy corrugated foils employed as catalytic microreactors for CO oxidation. Catal Today 213:183–191

    Article  CAS  Google Scholar 

  209. Li S, Li ZJ, Yan YS (2003) Ultra-low-k pure-silica zeolite MFI films using cyclodextrin as porogen. Adv Mater 15(18):1528–1531. doi:10.1002/adma.200305173

    Article  CAS  Google Scholar 

  210. Hunt HK, Lew CM, Sun MW, Yan YS, Davis ME (2010) Pure-silica zeolite thin films by vapor phase transport of fluoride for low-k applications. Microporous Mesoporous Mater 128(1–3):12–18. doi:10.1016/j.micromeso.2009.07.023

    Article  CAS  Google Scholar 

  211. Lew CM, Liu Y, Kisailus D, Kloster GM, Chow G, Boyanov B, Sun MW, Wang JL, Yan YS (2011) Insight into on-wafer crystallization of pure-silica-zeolite films through nutrient replenishment. Langmuir 27(7):3283–3285. doi:10.1021/La200603z

    Article  CAS  Google Scholar 

  212. Seo T, Yoshino T, Ohnuki N, Seino Y, Cho Y, Hata N, Kikkawa T (2011) Influence of synthesis process on mechanical and electrical characteristics of mesoporous pure silica-zeolite. J Electrochem Soc 158(6):H659–H665. doi:10.1149/1.3570582

    Article  CAS  Google Scholar 

  213. Che ML, Chuang S, Leu J (2012) The mechanical property, microstructure, and pore geometry of a methyltrimethoxysilane modified silica zeolite (MSZ) film. J Electrochem Soc 159(3):G23–G28. doi:10.1149/2.074203jes

    Article  CAS  Google Scholar 

  214. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Smith JV (1978) Silicalite, a new hydrophobic crystalline silica molecular-sieve. Nature 271(5645):512–516. doi:10.1038/271512a0

    Article  CAS  Google Scholar 

  215. Lin X, Falconer JL, Noble RD (1998) Parallel pathways for transport in ZSM-5 zeolite membranes. Chem Mater 10(11):3716–3723

    Article  CAS  Google Scholar 

  216. Cheng XL, Wang ZB, Yan YS (2001) Corrosion-resistant zeolite coatings by in situ crystallization. Electrochem Solid State Lett 4(5):B23–B26

    Article  CAS  Google Scholar 

  217. Cai R, Sun MW, Chen ZW, Munoz R, O’Neill C, Beving DE, Yan YS (2008) Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew Chem Int Ed 47(3):525–528. doi:10.1002/anie.200704003

    Article  CAS  Google Scholar 

  218. Xu XW, Wang J, Long YC (2006) Zeolite-based materials for gas sensors. Sensors-Basel 6(12):1751–1764. doi:10.3390/S6121751

    Article  CAS  Google Scholar 

  219. Sahner K, Hagen G, Schonauer D, Reiss S, Moos R (2008) Zeolites – versatile materials for gas sensors. Solid State Ionics 179(40):2416–2423. doi:10.1016/j.ssi.2008.08.012

    Article  CAS  Google Scholar 

  220. Mann DP, Paraskeva T, Pratt KFE, Parkin IP, Williams DE (2005) Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity. Meas Sci Technol 16(5):1193–1200. doi:10.1088/0957-0233/16/5/020

    Article  CAS  Google Scholar 

  221. Binions R, Davies H, Afonja A, Dungey S, Lewis D, Williams DE, Parkin IP (2009) Zeolite-modified discriminating gas sensors. J Electrochem Soc 156(3):J46–J51. doi:10.1149/1.3065436

    Article  CAS  Google Scholar 

  222. Sahner K, Schonauer D, Matam M, Post M, Moos R (2008) Selectivity enhancement of p-type semiconducting hydrocarbon sensors – the use of sol-precipitated nano-powders. Sensors Actuators B Chem 130(1):470–476. doi:10.1016/j.snb.2007.09.024

    Article  CAS  Google Scholar 

  223. Sahner K, Schonauer D, Kuchinke P, Moos R (2008) Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors. Sensorors Actuators B Chem 133(2):502–508. doi:10.1016/j.snb.2008.03.014

    Article  CAS  Google Scholar 

  224. Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2007) Zeolite membrane based selective gas sensors for monitoring and control of gas emissions. Sens Lett 5(3–4):485–499. doi:10.1166/S1.2007.239

    Article  CAS  Google Scholar 

  225. Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamaria J (2003) Use of zeolite films to improve the selectivity of reactive gas sensors. Catal Today 82(1–4):179–185. doi:10.1016/S0920-5861(03)00230-X

    Article  CAS  Google Scholar 

  226. Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamaria J (2007) Gas detection with SnO2 sensors modified by zeolite films. Sensorors Actuators B Chem 124(1):99–110. doi:10.1016/j.snb.2006.12.009

    Article  CAS  Google Scholar 

  227. Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamaria J (2008) Development and application of micromachined Pd/SnO2 gas sensors with zeolite coatings. Sensors Actuators B Chem 133(2):435–441. doi:10.1016/j.snb.2008.03.002

    Article  CAS  Google Scholar 

  228. Simon U, Franke ME (2000) Electrical properties of nanoscaled host/guest compounds. Microporous Mesoporous Mater 41(1–3):1–36. doi:10.1016/S1387-1811(00)00291-2

    Article  CAS  Google Scholar 

  229. Jadsadapattarakul D, Thanachayanont C, Nukeaw J, Sooknoi T (2010) Improved selectivity, response time and recovery time by [010] highly preferred-orientation silicalite-1 layer coated on SnO2 thin film sensor for selective ethylene gas detection. Sensors Actuators B Chem 144(1):73–80

    Article  CAS  Google Scholar 

  230. Li X, Roberts EPL, Holmes SM, Zholobenko V (2007) Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells. Solid State Ionics 178(19–20):1248–1255

    Article  CAS  Google Scholar 

  231. Son DH, Sharma RK, Shul YG, Kim H (2007) Preparation of Pt/zeolite-Nafion composite membranes for self-humidifying polymer electrolyte fuel cells. J Power Sources 165(2):733–738

    Article  CAS  Google Scholar 

  232. Holmberg BA, Wang X, Yan YS (2008) Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals. J Membr Sci 320(1–2):86–92

    Article  CAS  Google Scholar 

  233. Wang YB, Yang D, Zheng XH, Jiang ZY, Li J (2008) Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. J Power Sources 183(2):454–463

    Article  CAS  Google Scholar 

  234. Yildirim MH, Curos AR, Motuzas J, Julbe A, Stamatialis DF, Wessling M (2009) Nafion (R)/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells. J Membr Sci 338(1–2):75–83

    Article  CAS  Google Scholar 

  235. Yoonoo C, Dawson CP, Roberts EPL, Holmes SM (2011) Nafion (R)/mordenite composite membranes for improved direct methanol fuel cell performance. J Membr Sci 369(1–2):367–374

    Article  CAS  Google Scholar 

  236. Yang RD, Xu Z, Yang SW, Michos I, Li LF, Angelopoulos AP, Dong JH (2014) Nonionic zeolite membrane as potential ion separator in redox-flow battery. J Membr Sci 450:12–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z., Yan, Y. (2016). Zeolite Thin Films and Membranes: From Fundamental to Applications. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_13

Download citation

Publish with us

Policies and ethics