Skip to main content

Zeolite Catalysis for Biomass Conversion

  • Chapter
Zeolites in Sustainable Chemistry

Abstract

In this contribution, opportunities for the application of zeolites as catalysts in the conversion of biomass into fuels and chemicals are discussed. The constitution of various types of biomass in terms of composition and potential uses is briefly introduced. This contribution will focus on selective transformation of lignocellulosic biomass. Relevant mechanistic insights in the conversion of biomass constituents as well as an overview of the state-of-the-art in the application of zeolites in biomass conversion reactions are discussed. This chapter highlights the unique features of zeolites which make them an appealing choice as catalysts in future chemical biorefinery approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber G, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  2. Huber G, Iborra S et al (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  3. Karinen R, Vilonen K et al (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016

    Article  CAS  Google Scholar 

  4. Lange J, van der Heide E et al (2012) Furfural – a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166

    Article  CAS  Google Scholar 

  5. Cheng Y, Jae J (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51:1387–1390

    Article  CAS  Google Scholar 

  6. Vispute T, Zhang H et al (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227

    Article  CAS  Google Scholar 

  7. Zhang H, Cheng Y-T et al (2011) Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ Sci 4:2297

    Article  CAS  Google Scholar 

  8. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56

    Article  CAS  Google Scholar 

  9. Gosselink R, Hollak SA (2013) Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem 6:1576–1594

    Article  CAS  Google Scholar 

  10. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Article  CAS  Google Scholar 

  11. Kamm B, Kamm M, Gruber PR, Kromus S (2005) Biorefinery systems – an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  12. Krieger K (2014) Renewable energy: biofuels heat up. Nature 508:448–449

    Article  CAS  Google Scholar 

  13. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  14. Mäki-Arvela P, Salmi T et al (2011) Synthesis of sugars by hydrolysis of hemicelluloses – a review. Chem Rev 111:5638–5666

    Article  CAS  Google Scholar 

  15. Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763

    Article  CAS  Google Scholar 

  16. Adler E (1977) Lignin chemistry -past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  17. Zakzeski J, Bruijnincx PCA et al (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  18. Sharma RK, Bakhshi NN (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7:306–314

    Article  CAS  Google Scholar 

  19. Mante OD, Agblevor FA et al (2011) Fluid catalytic cracking of biomass pyrolysis vapors. Biomass Convers Biorefin 1:189–201

    Article  CAS  Google Scholar 

  20. Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Process Technol 45:161–183

    Article  CAS  Google Scholar 

  21. Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: Comparative catalyst performance and reaction pathways. Fuel Process Technol 45:185–202

    Article  CAS  Google Scholar 

  22. Liu C, Wang H et al (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  CAS  Google Scholar 

  23. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514–538

    Article  CAS  Google Scholar 

  24. Jae J, Tompsett GA (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358

    Article  CAS  Google Scholar 

  25. Carlson TR, Tompsett GA (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252

    Article  CAS  Google Scholar 

  26. Carlson TR, Jae J et al (2010) Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal 270:110–124

    Article  CAS  Google Scholar 

  27. Luterbacher JS, Rand JM et al (2014) Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science 343:277–280

    Article  CAS  Google Scholar 

  28. Geboers J, Van de Vyver S et al (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47:5590–5592

    Article  CAS  Google Scholar 

  29. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. US Department of Energy (DOE) Report (DOE) DOE/GO-102004-1992), Golden

    Google Scholar 

  30. van Putten RJ, van der Waal JC et al (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  CAS  Google Scholar 

  31. Dusselier M, Van Wouwe P et al (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415

    Article  CAS  Google Scholar 

  32. Speck JC Jr (1958) The Lobry de Bruyn-Alberda van Ekenstein transformation. Adv Carbohydr Chem 13:63–103

    CAS  Google Scholar 

  33. Kooyman C, Vellenga K et al (1977) The isomerization of d-glucose into d-fructose in aqueous alkaline solutions. Carbohydr Res 54:33–44

    Article  CAS  Google Scholar 

  34. Takagaki A, Ohara M et al (2009) A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem Commun 41:6276–6278

    Article  CAS  Google Scholar 

  35. Lecomte J, Finiels A et al (2002) Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites. Starch Stärke 54:75–79

    Article  CAS  Google Scholar 

  36. Valencia S, Corma A (1999) Three-dimensional framework of silica, titania, germania, and tin oxide; selective oxidation catalysts, US5968473A

    Google Scholar 

  37. Corma A, Domine ME et al (2003) Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J Catal 215:294–304

    Article  CAS  Google Scholar 

  38. Moliner M, Román-Leshkov Y et al (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168

    Article  CAS  Google Scholar 

  39. Bílik V (1972) Reactions of saccharides catalyzed by molybdate ions: II: Epimerization of D-glucose and D-mannose. Chem Zvesti 26:183–186

    Google Scholar 

  40. Moliner M (2014) State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans 43:4197–4208

    Article  CAS  Google Scholar 

  41. Hayes ML, Pennings NJ et al (1982) Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. J Am Chem Soc 104:6764–6769

    Article  CAS  Google Scholar 

  42. Bermejo-Deval R, Gounder R et al (2012) Framework and extraframework tin sites in zeolite beta react glucose differently. ACS Catal 2:2705–2713

    Article  CAS  Google Scholar 

  43. Dijkmans J, Gabriëls D et al (2013) Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem 15:2777–2785

    Article  CAS  Google Scholar 

  44. Gunther WR, Wang Y et al (2012) Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 3:1109

    Article  CAS  Google Scholar 

  45. West RM, Holm MS et al (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130

    Article  CAS  Google Scholar 

  46. Saravanamurugan S, Paniagua M et al (2013) Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media. J Am Chem Soc 135:5246–5249

    Article  CAS  Google Scholar 

  47. Zhang Y, Hidajat K et al (2004) Optimal design and operation of SMB bioreactor: production of high fructose syrup by isomerization of glucose. Biochem Eng J 21:111–121

    Article  CAS  Google Scholar 

  48. Zhang Y, Pidko EA et al (2011) Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chemistry 17:5281–5288

    Article  CAS  Google Scholar 

  49. Pidko EA, Degirmenci V et al (2010) Glucose activation by transient Cr2+ dimers. Angew Chem 122:2584–2588

    Article  Google Scholar 

  50. Pidko EA, Degirmenci V et al (2014) On the mechanism of Lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4:1263–1271

    Article  CAS  Google Scholar 

  51. Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models. J Phys Chem A 115:8754–8760

    Article  CAS  Google Scholar 

  52. Degirmenci V, Pidko EA et al (2011) Towards a selective heterogeneous catalyst for glucose dehydration to 5-hydroxymethylfurfural in water: CrCl2 catalysis in a thin immobilized ionic liquid layer. ChemCatChem 3:969–972

    Article  CAS  Google Scholar 

  53. Bare SR, Kelly SD et al (2005) Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. J Am Chem Soc 127:12924–12932

    Article  CAS  Google Scholar 

  54. Yang G, Pidko EA et al (2013) Structure, stability, and Lewis acidity of mono and double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodic density functional theory study. J Phys Chem C 117:3976–3986

    Article  CAS  Google Scholar 

  55. Li G, Pidko EA et al (2014) Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective. Catal Sci Technol 4:2241–2250

    Article  CAS  Google Scholar 

  56. Rai N, Caratzoulas S et al (2013) Role of silanol group in Sn-Beta zeolite for glucose isomerization and epimerization reactions. ACS Catal 3:2294–2298

    Article  CAS  Google Scholar 

  57. Khouw C, Davis ME (1995) Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions. J Catal 151:77–86

    Article  CAS  Google Scholar 

  58. Boronat M, Concepción P et al (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J Catal 234:111–118

    Article  CAS  Google Scholar 

  59. Osmundsen CM, Holm MS et al (2012) Tin-containing silicates: structure–activity relations. Proc R Soc A 468:2000–2016

    Article  CAS  Google Scholar 

  60. Tuercke T, Panic S et al (2009) Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose. Chem Eng Technol 32:1815–1822

    Article  CAS  Google Scholar 

  61. van der Graaff WNP, Garrido Olvera K et al (2014) Stability and catalytic properties of porous acidic (organo)silica materials for conversion of carbohydrates. J Mol Catal A Chem 388–389:81–89

    Article  CAS  Google Scholar 

  62. Tucker MH, Crisci AJ et al (2012) Acid-functionalized SBA-15-type periodic mesoporous organosilicas and their use in the continuous production of 5-hydroxymethylfurfural. ACS Catal 2:1865–1876

    Article  CAS  Google Scholar 

  63. Rivalier P, Duhamet J et al (1995) Development of a continuous catalytic heterogeneous column reactor with simultaneous extraction of an intermediate product by an organic solvent circulating in countercurrent manner with the aqueous phase. Catal Today 24:165–171

    Article  CAS  Google Scholar 

  64. Moreau C, Durand R et al (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–224

    Article  CAS  Google Scholar 

  65. Zakrzewska ME, Bogel-Łukasik E et al (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem Rev 111:397–417

    Article  CAS  Google Scholar 

  66. Blanksma JJ, Egmond G (2010) Humin from hydroxymethylfurfuraldehyde. Recueil des Travaux Chimiques des Pays-Bas 65:309–310

    Article  Google Scholar 

  67. Hoang TM, Lefferts L et al (2013) Valorization of humin-based byproducts from biomass processing-a route to sustainable hydrogen. ChemSusChem 6:1651–1658

    Article  CAS  Google Scholar 

  68. Amarasekara AS, Williams LD et al (2008) Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Carbohydr Res 343:3021–3024

    Article  CAS  Google Scholar 

  69. Caratzoulas S, Vlachos DG (2011) Converting fructose to 5-hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of the mechanism and energetics. Carbohydr Res 346:664–672

    Article  CAS  Google Scholar 

  70. Shimizu K-I, Uozumi R et al (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853

    Article  CAS  Google Scholar 

  71. Wyman CE, Decker SR et al (2005) Hydrolysis of cellulose and hemicellulose. In: Dumitriu S (ed) Chapter 43: Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, Inc., New York, pp 995–1033

    Google Scholar 

  72. Zhang L, Yu H et al (2014) Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3.6H2O as catalyst. Bioresour Technol 151:355–360

    Article  CAS  Google Scholar 

  73. Moreau C, Durand R et al (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7:95–99

    Article  CAS  Google Scholar 

  74. Zhao H, Holladay JE et al (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  CAS  Google Scholar 

  75. Li L, Stroobants C et al (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181

    Article  CAS  Google Scholar 

  76. Corma A, Renz M (2004) Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbonyl-ene reaction. Chem Commun 5:550–551

    Article  CAS  Google Scholar 

  77. Nikolla E, Román-Leshkov Y et al (2011) “One-pot” synthesis of 5-(Hydroxymethyl)furfural from carbohydrates using tin-Beta zeolite. ACS Catal 1:408–410

    Article  CAS  Google Scholar 

  78. Lew CM, Rajabbeigi N et al (2012) One-pot synthesis of 5-(Ethoxymethyl)furfural from glucose using Sn-BEA and amberlyst catalysts. Ind Eng Chem Res 51:5364–5366

    Article  CAS  Google Scholar 

  79. Gallo JMR, Alonso DM et al (2013) Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem 15:85–90

    Article  CAS  Google Scholar 

  80. Wang J, Ren J et al (2012) Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chem 14:2506–2512

    Article  CAS  Google Scholar 

  81. Otomo R, Yokoi T et al (2014) Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Appl Catal A Gen 470:318–326

    Article  CAS  Google Scholar 

  82. Tan M, Zhao L et al (2011) Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system. Biomass Bioenergy 35:1367–1370

    Article  CAS  Google Scholar 

  83. Leonard RH (1956) Levulinic acid as a basic chemical raw material. Ind Eng Chem 48:1330–1341

    Article  Google Scholar 

  84. Bond JQ, Alonso DM et al (2010) Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114

    Article  CAS  Google Scholar 

  85. Lange JP, Price R et al (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem 49:4479–4483

    Article  CAS  Google Scholar 

  86. Bui L, Luo H et al (2013) Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of gamma-valerolactone from furfural. Angew Chem 52:8022–8025

    Article  CAS  Google Scholar 

  87. Wang Y, Deng W et al (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141

    Google Scholar 

  88. Wang F-F, Liu C-L et al (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15:2091–2095

    Article  CAS  Google Scholar 

  89. Holm MS, Saravanamurugan S et al (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605

    Article  CAS  Google Scholar 

  90. Holm MS, Pagán-Torres YJ et al (2012) Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem 14:702–706

    Article  CAS  Google Scholar 

  91. Sheldon RA, Wallau M et al (1998) Heterogeneous catalysts for liquid-phase oxidations: philosophers’ stones or Trojan horses? Acc Chem Res 31:485–493

    Article  CAS  Google Scholar 

  92. Taarning E, Saravanamurugan S et al (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627

    Article  CAS  Google Scholar 

  93. Guo Q, Fan F et al (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6:1352–1356

    Article  CAS  Google Scholar 

  94. de Clippel F, Dusselier M et al (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J Am Chem Soc 134:10089–10101

    Article  CAS  Google Scholar 

  95. Dapsens PY, Kusema BT et al (2014) Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. J Mol Catal A Chem 388–389:141–147

    Article  CAS  Google Scholar 

  96. Thomas JM (2012) The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts. Proc R Soc A Math Phys Eng Sci 468:1884–1903

    Article  CAS  Google Scholar 

  97. Taramasso M, Perego G et al (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US4410501A

    Google Scholar 

  98. Chang C-C, Wang Z et al (2012) Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Adv 2:10475–10477

    Article  CAS  Google Scholar 

  99. Kang Z, Zhang X et al (2013) Factors affecting the formation of Sn-Beta zeolites by steam-assisted conversion method. Mater Chem Phys 141:519–529

    Article  CAS  Google Scholar 

  100. Hammond C, Conrad S et al (2012) Simple and scalable preparation of highly active Lewis acidic Sn-beta. Angew Chem 51:11736–11739

    Article  CAS  Google Scholar 

  101. Wolf P, Hammond C et al (2014) Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites. Dalton Trans 43:4514–4519

    Article  CAS  Google Scholar 

  102. Li P, Liu G et al (2011) Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. J Phys Chem C 115:3663–3670

    Article  CAS  Google Scholar 

  103. Rigutto MS, de Ruiter R et al (1994) Titanium-containing large pore molecular sieves from boron-beta: preparation, characterization and properties. J Catal 84:2245–2252

    CAS  Google Scholar 

  104. Tang B, Dai W et al (2014) A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chem 16:2281–2291

    Article  CAS  Google Scholar 

  105. Wu L, Degirmenci V et al (2013) Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. J Catal 298:27–40

    Article  CAS  Google Scholar 

  106. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  107. Bellussi G, Carati A, Millini R (2010) Industrial potential of zeolites. In: Čejka J, Corma A, Zones S (eds) Zeolites and catalysis: synthesis, reactions and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  108. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  CAS  Google Scholar 

  109. Beyerlein RA, Choi-Feng C, Hall JB, Huggins BJ, Ray GJ (1994) Investigation of mesopore formation. In: Occelli ML, O’Connor P (eds) Fluid catalytic cracking III. ACS Publications, Washington, DC

    Google Scholar 

  110. Hayakawa K, Morita T et al (1996) Adsorption of cationic surfactants on hydrophobic mordenites of different Si/Al ratio. J Colloid Interface Sci 177:621–627

    Article  CAS  Google Scholar 

  111. Zapata PA, Faria J et al (2012) Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. J Am Chem Soc 134:8570–8578

    Article  CAS  Google Scholar 

  112. Tatsumi T, Jappar N (1998) Properties of Ti-beta zeolites synthesized by dry-gel conversion and hydrothermal methods. J Phys Chem B 102:7126–7131

    Article  CAS  Google Scholar 

  113. Groen JC, Peffer LAA et al (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chemistry 11:4983–4994

    Article  CAS  Google Scholar 

  114. Groen JC, Jansen JC et al (2004) Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J Phys Chem B 108:13062–13065

    Article  CAS  Google Scholar 

  115. Groen JC, Peffer LAA et al (2004) On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater 69:29–34

    Article  CAS  Google Scholar 

  116. Groen JC, Moulijn JA et al (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121–2131

    Article  CAS  Google Scholar 

  117. Svelle S, Sommer L et al (2011) How defects and crystal morphology control the effects of desilication. Catal Today 168:38–47

    Article  CAS  Google Scholar 

  118. Van Pelt AH, Simakova OA et al (2014) Stability of functionalized activated carbon in hot liquid water. Carbon 77:143–154

    Article  CAS  Google Scholar 

  119. Ravenelle RM, Schüβler F et al (2010) Stability of zeolites in hot liquid water. J Phys Chem C 114:19582–19595

    Article  CAS  Google Scholar 

  120. Malola S, Svelle S et al (2012) Detailed reaction paths for zeolite dealumination and desilication from density functional calculations. Angew Chem Int Ed 51:652–655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiel J. M. Hensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Graaff, W.N.P., Pidko, E.A., Hensen, E.J.M. (2016). Zeolite Catalysis for Biomass Conversion. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_10

Download citation

Publish with us

Policies and ethics