Skip to main content

Abstract

Fatty alcohols, fatty acids (saturated and unsaturated), and fatty acid esters have been extensively utilized as skin penetration enhancers in many research studies over the past 3 decades. Some of these compounds, for example, oleic acid, stearic acid, isopropyl palmitate, ethyl oleate, have been approved by the US Food and Drug Administration for their use in topical and transdermal products. It is generally believed that these agents increase skin permeation by disrupting the lipid organization in skin layers, forming solvated complexes, increasing the diffusivity and partitioning of drugs in/through the skin barrier. This chapter summarizes the utility of fatty alcohols, fatty acids, and their esters as promising percutaneous penetration enhancers for topical and transdermal delivery of drugs. The role of vehicle or other ingredients from the formulation on the enhancement effects of the topical or transdermal formulation and their skin irritation potential has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenburger R, Rohr UD, Kissel T (1998) Rate control in transdermal beta-estradiol reservoir membrane systems: the role of membrane and adhesive layer. Pharm Res 8:1238–1243

    Article  Google Scholar 

  • Andega S, Kanikkannan N, Singh M (2001) Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J Control Release 77(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Anigbogu A, Roy S, Anteljevic V (2006) Formulations and methods for enhancing the transdermal penetration of a drug.US Patent 0,065,494 A1, 31 Jul 2006

    Google Scholar 

  • Aungst BJ (1995) Fatty acids as skin permeation enhancers. In: Smith E, Maibach HI (eds) Percutaneous penetration enhancers. CRC Press, New York, pp 277–287

    Google Scholar 

  • Aungst BJ, Rogers NJ, Shefter E (1986) Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. Int J Pharm 33(1):225–234

    Article  CAS  Google Scholar 

  • Aungst BJ, Blake JA, Rogers NJ, Hussain MA (1990) Transdermal oxymorphone formulation development and methods for evaluating flux and lag times for two skin permeation-enhancing vehicles. J Pharm Sci 79(12):1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Baek JS, Lim JH, So JW, Kim JI, Lee TW, Hwang SJ et al (2012) The feasibility study of transdermal drug delivery systems for antidepressants possessing hydrophilicity or hydrophobicity. J Pharm Inves 42(1):109–114

    Article  CAS  Google Scholar 

  • Barry BW (1987) Mode of action of penetration enhancers in human skin. J Control Release 6:85–97

    Article  CAS  Google Scholar 

  • Beitner H (2003) Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% a-lipoic acid related to photoageing of facial skin. Br J Dermatol 149(4):841–849

    Article  CAS  PubMed  Google Scholar 

  • Bhandari KH, Newa M, Yoon SI, Kim JS, Jang KY, Kim JA et al (2007) Evaluation of physicochemical properties, skin permeation and accumulation profiles of ketorolac fatty ester prodrugs. Biol Pharma Bull 30(11):2211–2216

    Article  CAS  Google Scholar 

  • Bhandari KH, Lee DX, Newa M, Yoon SI, Kim JS, Kim DD et al (2008) Evaluation of skin permeation and accumulation profiles of a highly lipophilic fatty ester. Arch Pharm Res 31(2):242–249

    Article  CAS  PubMed  Google Scholar 

  • Bhatia KS, Singh J (1998) Synergistic effect of iontophoresis and a series of fatty acids on LHRH permeability through porcine skin. J Pharm Sci 87(4):462–469

    Article  CAS  PubMed  Google Scholar 

  • Bhatia KS, Gao S, Freeman TP, Singh J (1997) Effect of penetration enhancers and iontophoresis on the ultrastructure and cholecystokinin-8 permeability through porcine skin. J Pharm Sci 86(9):1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Boelsma E, Tanojo H, Bodde HE, Ponec M (1996) Assessment of the potential irritancy of oleic acid on human skin: evaluation in vitro and in vivo. Toxicol In Vitro 10:729–742

    Article  CAS  PubMed  Google Scholar 

  • Boelsma E, Tanojo H, Bodde HE, Ponec M (1997) An in vitro-in vivo study of the use of a human skin equivalent for irritancy screening of fatty acids. Toxicol In Vitro 11:365–376

    Article  CAS  PubMed  Google Scholar 

  • Brain K, Walters K (1993) Molecular modeling of skin permeation enhancement by chemical agents. In: Walters K, Hadgraft J (eds) Pharmaceutical skin penetration enhancement. Marcel Dekker Inc, New York, pp 389–416

    Google Scholar 

  • Carelli V, Di Colo G, Nannipieri E, Serafini MF (1992) Enhancement effects in the permeation of alprazolam through hairless mouse skin. Int J Pharm 88(1):89–97

    Article  CAS  Google Scholar 

  • Carrara D (2001) Composition for controlled and sustained transdermal administration, US Patent 6,231,885 B1, 15 May 2001

    Google Scholar 

  • Carrara D, Porto G, Rodriguez J (2010) Composition for transdermal and/or transmucosal administration of active compounds that ensures adequate therapeutic levels. European Patent, 1,323,431 B1, 27 Oct 2010

    Google Scholar 

  • Chantasart D, Li SK, He N, Warner KS, Prakongpan S, Higuchi WI (2004) Mechanistic studies of branched‐chain alkanols as skin permeation enhancers. J Pharm Sci 93(3):762–779

    Article  CAS  PubMed  Google Scholar 

  • Chi SC, Park ES, Kim H (1995) Effect of penetration enhancers on flurbiprofen permeation through rat skin. Int J Pharm 126(1):267–274

    Article  CAS  Google Scholar 

  • Chisty MN, Bellantone RA, Taft DR, Plakogiannis FM (2002) In vitro evaluation of the release of albuterol sulfate from polymer gels: effect of fatty acids on drug transport across biological membranes. Drug Dev Ind Pharm 28(10):1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Cho CW, Choi JS, Kim SJ, Shin SC (2009) Enhanced transdermal delivery of loratadine from the EVA matrix. Drug Deliv 16(4):230–235

    Article  CAS  PubMed  Google Scholar 

  • Choi HK (2007) Preparation and composition of meloxicam transdermal drug delivery system, US Patent 0,246,266 A1, 20 Sept 2007

    Google Scholar 

  • Cotte M, Dumas P, Besnard M, Tchoreloff P, Walter P (2004) Synchrotron FT-IR microscopic study of chemical enhancers in transdermal drug delivery: example of fatty acids. J Control Release 97:269–281

    Article  CAS  PubMed  Google Scholar 

  • Csóka G, Marton S, Zelko R, Otomo N, Antal I (2007) Application of sucrose fatty acid esters in transdermal therapeutic systems. Eur J Pharm Biopharm 65(2):233–237

    Article  PubMed  CAS  Google Scholar 

  • Del Rio-Sancho S, Serna-Jiménez CE, Calatayud-Pascual MA, Balaguer-Fernández C, Femenía-Font A, Merino V et al (2012) Transdermal absorption of memantine. Effect of chemical enhancers, iontophoresis and role of enhancer lipophilicity. Eur J Pharm Biopharm 82(1):164–170

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Lin J, Xiao J (2012) Transdermal patch containing rasagiline for treatment or prophylaxis of nervous system disease and its preparation process, European Patent, 2,011,488 B1, 22 Aug. 2012

    Google Scholar 

  • Dillaha L (2008) Transdermal delivery system comprising glycopyrrolate to treat sialorrhea, US Patent 144,285, 23 Jun 2008

    Google Scholar 

  • Dimas DA, Dallas PP, Rekkas DM (2004) Use of an 8132 asymmetrical factorial design for the in vitro evaluation of ondansetron permeation through human epidermis. Pharm Dev Technol 9(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • El-Laithy HM, Shoukry O, Mahran LG (2011) Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm 77(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Escribano E, Calpena AC, Queralt J, Obach R, Doménech J (2003) Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur J Pharm Sci 19:203–210

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Hwang TL, Fang CL, Chiu HC (2003a) In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug. Int J Pharm 255:153–166

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Hwang TL, Leu YL (2003b) Effect of enhancers and retarders on percutaneous absorption of flurbiprofen from hydrogels. Int J Pharm 250:313–325

    Article  CAS  PubMed  Google Scholar 

  • Foldwari M, Kwadwo S, Poku A (2002) Composition and method for dermal and transdermal administration of a cytokine, US Patent, 6,444,200 B2, 3 Sep 2002

    Google Scholar 

  • Francoeur ML, Golden GM, Potts RO (1990) Oleic acid: its effects on stratum corneum in relation to transdermal drug delivery. Pharm Res 7:621–627

    Article  CAS  PubMed  Google Scholar 

  • Gay CL, Murphy TM, Hadgraft J, Kellaway IW, Evans JC, Rowlands CC (1989) An electron spin resonance study of skin penetration enhancers. Int J Pharm 49:39–45

    Article  Google Scholar 

  • Giannakou SA, Dallas PP, Rekkas DM, Choulis NH (1998) Development and in vitro evaluation of nimodipine transdermal formulations using factorial design. Pharm Dev Technol 3(4):517–525

    Article  CAS  PubMed  Google Scholar 

  • Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20:63–102

    Article  CAS  PubMed  Google Scholar 

  • Goldberg-Cettina M, Liu P, Nightingale J, Kurihara-Bergstrom T (1995) Enhanced transdermal delivery of estradiol in vitro using binary vehicles of isopropyl myristate and short-chain alkanols. Int J Pharm 114(2):237–245

    Article  CAS  Google Scholar 

  • Golden GM, Mckie JE, Potts RO (1987) Role of stratum corneum lipid fluidity in transdermal drug flux. J Pharm Sci 76(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Gonella J (1997) Administration system for estradiol, US Patent 5,665,377, 9 Sep 1997

    Google Scholar 

  • Goosen C, Laing TJ, Du Plessis J, Goosen TC, Lu GW, Flynn GL (2002) Percutaneous delivery of thalidomide and its N-alkyl analogs. Pharm Res 19:434–439

    Article  CAS  PubMed  Google Scholar 

  • Gorukanti SR, Li L, Kim KH (1999) Transdermal delivery of antiparkinsonian agent, benztropine. I. Effect of vehicles on skin permeation. Int J Pharm 192:159–172

    Article  CAS  PubMed  Google Scholar 

  • Green PG, Hadgraft J (1987) Facilitated transfer of cationic drugs across a lipoidal membrane by oleic acid and lauric acid. Int J Pharm 37:251–255

    Article  CAS  Google Scholar 

  • Gwak HS, Chun IK (2002) Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int J Pharm 236(1–2):57

    Article  CAS  PubMed  Google Scholar 

  • Gwak HS, Oh IS, Chun IK (2004) Transdermal delivery of ondansetron hydrochloride: effects of vehicles and penetration enhancers. Drug Dev Ind Pharm 30(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Hathout RM, Woodman TJ, Mansour S, Mortada ND, Geneidi AS, Guy RH (2010) Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci 40:188–196

    Article  CAS  PubMed  Google Scholar 

  • Heard CM, Gallagher SJ, Harwood J, Maguire PB (2003) The in vitro delivery of NSAIDs across skin was in proportion to the delivery of essential fatty acids in the vehicle: evidence that solutes permeate skin associated with their solvation cages? Int J Pharm 261:165–169

    Article  CAS  PubMed  Google Scholar 

  • Hille T (1993) Technological aspects of penetration enhancers in transdermal systems. In: Walters K, Hadgraft J (eds) Pharmaceutical skin penetration enhancement. Marcel Dekker, New York, pp 335–344

    Google Scholar 

  • Hsu LR, Huang YB, Wu PC, Tsai YH (1994) Percutaneous absorption of piroxicah from fapg base through rat skin: effects of oleic acid and saturated fatty acid added to fapg base. Drug Dev Ind Pharm 20(8):1425–1437

    Article  CAS  Google Scholar 

  • Ibrahim SA, Li SK (2010) Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm Res 27(1):115–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain AK, Thomas NS, Panchagnula R (2002) Transdermal drug delivery of imipramine hydrochloride. I. Effect of terpenes. J Control Release 79:93–101

    Article  CAS  PubMed  Google Scholar 

  • Jasti BR, Abraham W (1998) Fluorescence spectroscopic investigation of effect of excipients on epidermal barrier and transdermal systems. J Investig Dermatol Symp Proc 3(2):128–130

    Article  CAS  PubMed  Google Scholar 

  • Jenner J, Saleem A, Swanston D (1995) Transdermal delivery of physostigmine: a pretreatment against organophosphate poisoning. J Pharm Pharmacol 47:206–212

    Article  CAS  PubMed  Google Scholar 

  • Kai T, Mak VH, Potts RO, Guy RH (1990) Mechanism of percutaneous penetration enhancement: effect of n-alkanols on the permeability barrier of hairless mouse skin. J Control Release 12:103–112

    Article  CAS  Google Scholar 

  • Kandimalla K, Kanikkannan N, Andega S, Singh M (1999) Effect of fatty acids on the permeation of melatonin across rat and pig skin in vitro and on the transepidermal water Loss in rats in-vivo. J Pharm Pharmacol 51(7):783–790

    Article  CAS  PubMed  Google Scholar 

  • Kandimalla KK, Babu RJ, Singh M (2009) Biphasic flux profiles of melatonin: the Yin–Yang of transdermal permeation enhancement mediated by fatty alcohol enhancers. J Pharm Sci 99(1):209–218

    Article  CAS  Google Scholar 

  • Kanikkannan N, Singh M (2002) Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm 248:219–228

    Article  CAS  PubMed  Google Scholar 

  • Kanikkannan N, Andega S, Burton S, Babu RJ, Singh M (2004) Formulation and in vitro evaluation of transdermal patches of melatonin. Drug Dev Ind Pharm 30:205–212

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 1788(11):2362–2373

    Article  CAS  PubMed  Google Scholar 

  • Karia C, Harwood JL, Morris AP, Heard CM (2004) Simultaneous permeation of tamoxifen and γ linolenic acid across excised human skin. Further evidence of the permeation of solvated complexes. Int J Pharm 271:305–309

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Ghanem AH, Mahmoud H, Higuchi WI (1992) Short chain alkanols as transport enhancers for lipophilic and polar/ionic permeants in hairless mouse skin: mechanism (s) of action. Int J Pharm 80(1):17–31

    Article  CAS  Google Scholar 

  • Kim MK, Lee CH, Kim DD (2000) Skin permeation of testosterone and its ester derivatives in rats. J Pharm Pharmacol 52:369–375

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Doh HJ, Choi MK, Chung SJ, Shim CK, Kim DD et al (2008) Skin permeation enhancement of diclofenac by fatty acids. Drug Deliv 15(6):373–379

    Article  CAS  PubMed  Google Scholar 

  • Kochinke F, Baker RW (1994) Device and method for enhanced administration of physostigmine, US Patent, 5,364,629, 15 Nov 1994

    Google Scholar 

  • Kojima H, Sato A, Hanamura A, Katada T, Konishi H (1998) Evaluation of skin irritation in a reconstituted human dermal model (3-D model) using water insoluble fatty acids, fatty alcohols and hydrocarbons. Altern Animal Test Exp 5:201–210

    Google Scholar 

  • Krotscheck U, Boothe DM, Boothe HW (2004) Evaluation of transdermal morphine and fentanyl pluronic lecithin organogel administration in dogs. Vet Ther 5:202–211

    PubMed  Google Scholar 

  • Lashmar UT, Hadgraft J, Thomas N (1989) Topical application of penetration enhancers to the skin of nude mice: a histopathological study. J Pharm Pharmacol 41:118–121

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Chun IK (2012) Effects of various vehicles and fatty acids on the skin permeation of lornoxicam. J Pharm Invest 42(5):235–241

    Article  CAS  Google Scholar 

  • Lee PJ, Ahmad N, Langer R, Mitragotri S, Prasad Shastri V (2006) Evaluation of chemical enhancers in the transdermal delivery of lidocaine. Int J Pharm 308(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Lo W, Ghazaryan A, Tso CH, Hu PS, Chen WL, Kuo TR, Dong CY (2012) Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles. Appl Phys Lett 100(21):213701

    Article  CAS  Google Scholar 

  • Loftsson T, Gildersleeve N, Bodor N (1987) The effect of vehicle additives on the transdermal delivery of nitroglycerin. Pharm Res 4:436–437

    Article  CAS  PubMed  Google Scholar 

  • Matsugo S, Bito T, Konishi T (2011) Photochemical stability of lipoic acid and its impact on skin ageing. Free Radic Res 45(8):918–924

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Tojima H, Haruta T, Suzuki M, Kakemi M (1996) Enhancing effects of unsaturated fatty acids with various structures on the permeation of indomethacin through rat skin. J Pharm Pharmacol 48(11):1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Nair VB, Panchagnula R (2003) Effect of iontophoresis and fatty acids on permeation of Arginine Vasopressin through rat skin. Pharmacol Res 47:563–569

    Article  CAS  PubMed  Google Scholar 

  • Nanayakkara GR, Bartlett A, Forbes B, Marriott C, Whitfield PJ, Brown MB (2005) The effect of unsaturated fatty acids in benzyl alcohol on the percutaneous permeation of three model penetrants. Int J Pharm 301(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Narishetty ST, Panchagnula R (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Release 95:367–379

    Article  CAS  PubMed  Google Scholar 

  • Neubert R, Rettig W, Wartewig S, Wegener M, Wienhold A (1997) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. II. Mixtures of ceramides and saturated fatty acids. Chem Phys Lipids 89:3–14

    Article  CAS  PubMed  Google Scholar 

  • Ogiso T, Shintani M (1990) Mechanism for the enhancement effect of fatty acids on the percutaneous absorption of propranolol. J Pharm Sci 79(12):1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Oh YK, Kim CK (2001) Effects of vehicles and enhancers on transdermal delivery of melatonin. Int J Pharm 212(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Sakai T, Danjo K (2005) Effect of sucrose fatty acid esters on transdermal permeation of lidocaine and ketoprofen. Biol Pharm Bull 28(9):1689–1694

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Sakai T, Tokuyama C, Danjo K (2011) Sugar ester J-1216 enhances percutaneous permeation of ionized lidocaine. J Pharm Sci 100(10):4482–4490

    Article  CAS  PubMed  Google Scholar 

  • Ongpipattanakul B, Burnette RR, Potts RO, Francoeur ML (1991) Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm Res 8(3):350–354

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SK, Singh J (2005) Effect of chemical penetration enhancer and iontophoresis on the in vitro percutaneous absorption enhancement of insulin through porcine epidermis. Pharm Dev Technol 10(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Richards H, Thomas CP, Bowen JL, Heard CM (2006) In-vitro transcutaneous delivery of ketoprofen and polyunsaturated fatty acids from a pluronic lecithin organogel vehicle containing fish oil. J Pharm Pharmacol 58(7):903–908

    Article  CAS  PubMed  Google Scholar 

  • Segall A, Sosa M, Alami A, Enero C, Hormaechea F, Pizzorno MT et al (2004) Stability study of lipoic acid in the presence of vitamins A and E in o/w emulsions for cosmetic application. J Cosmet Sci 55(5):449–462

    CAS  PubMed  Google Scholar 

  • Seki T, Morimoto K (2003) Enhancing effects of medium chain aliphatic alcohols and esters on the permeation of 6-carboxyfluorescein and indomethacin through rat skin. Drug Deliv 10(4):289–293

    Article  CAS  PubMed  Google Scholar 

  • Setoh K, Murakami M, Araki N, Fujita T, Yamamota A, Muranishi S (1995) Improvement of transdermal delivery of tetragastrin by lipophilic modification with fatty acids. J Pharm Pharmacol 47(10):808–811

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Desai P, Singh M (2011) Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 158(2):336–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharma K, Roy DS, Roos JE (1993) Transdermal administration of buprenorphine, European Patent 0,535,111 A1, 7 Apr 1993

    Google Scholar 

  • Singh BN, Singh RB, Singh J (2005) Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm 298(1):98–107

    Article  CAS  PubMed  Google Scholar 

  • Sloan KB, Beall HD, Taylor HE, Getz JJ, Villaneuva R, Nipper R et al (1998) Transdermal delivery of theophylline from alcohol vehicles. Int J Pharm 171:185–193

    Article  CAS  Google Scholar 

  • Song JF, Lau-Cam CA, Kim KH (2001) Monohydroxylation and esterification as determinants of the effects of cis- and trans-9-octadecenoic acids on the permeation of hydrocortisone and 5-fluorouracil across hairless mouse skin in vitro. Int J Pharm 212:153–160

    Article  CAS  PubMed  Google Scholar 

  • Stillman MA, Maibach HI, Shalita AR (1975) Relative irritancy of free fatty acids of different chain length. Contact Dermatitis 1:65–69

    Article  CAS  PubMed  Google Scholar 

  • Stott PW, Williams AC, Barry BW (2001) Mechanistic study into the enhanced transdermal permeation of a model β-blocker, propranolol, by fatty acids: a melting point depression effect. Int J Pharm 219:161–176

    Article  CAS  PubMed  Google Scholar 

  • Subedi RK, Ryoo JP, Moon C, Choi HK (2011) Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int J Pharm 419(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Rytting JH (2001) Novel approach to improve permeation of ondansetron across shed snake skin as a model membrane. J Pharm Pharmacol 53:789–794

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Matsumoto T, Kimura T, Sakano H, Mizuno N, Yata N (1996) Effect of polyol fatty acid esters on diclofenac permeation through rat skin. Biol Pharm Bull 19(6):893

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Sakano H, Yoshida M, Numata N, Mizuno N (2001) Characterization of the influence of polyol fatty acid esters on the permeation of diclofenac through rat skin. J Control Release 73(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Tanojo H, Bouwstra JA, Junginger HE, Boddé HE (1997) In vitro human skin barrier modulation by fatty acids: skin permeation and thermal analysis studies. Pharm Res 14(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Tanojo HT, Boelsma E, Junginger HE, Ponec M, Bodde HE (1998) In vivo human skin barrier modulation by topical application of fatty acids. Skin Pharmacol Physiol 11:87–97

    Article  CAS  Google Scholar 

  • Thomas NS, Panchagnula R (2003) Combination strategies to enhance transdermal permeation of zidovudine (AZT). Pharmazie 58(12):895–898

    CAS  PubMed  Google Scholar 

  • Thorsteinsson T, Másson M, Jarvinen T, Nevalainen T, Loftsson T (2002) Cycloserine fatty acid derivatives as prodrugs: synthesis, degradation and in vitro skin permeability. Chem Pharm Bull 50:554–557

    Article  CAS  PubMed  Google Scholar 

  • Touitou E, Godin B, Karl Y, Bujanover S, Becker Y (2002) Oleic acid, a skin penetration enhancer, affects Langerhans cells and corneocytes. J Control Release 80(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Valjakka-Koskela R, Hirvonen J, Mönkkönen J, Kiesvaara J, Antila S, Lehtonen L et al (2000) Transdermal delivery of levosimendan. Eur J Pharm Sci 11(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Wang MY, Yang YY, Heng PW (2004) Role of solvent in interactions between fatty acids-based formulations and lipids in porcine stratum corneum. J Control Release 94:207–216

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xue H, Wang L (2008) Composition containing rotigotine and use thereof and transdermal patch containing the composition, US Patent 0,027,345 A1, 3 Jul 2008

    Google Scholar 

  • Wang JJ, Sung KC, Huang JF, Yeh CH, Fang JY (2010) Ester prodrugs of morphine improve transdermal drug delivery: a mechanistic study. J Pharm Pharmacol 59(7):917–925

    Article  CAS  Google Scholar 

  • Warner KS, Li SK, Higuchi WI (2001) Influences of alkyl group chain length and polar head group on chemical skin permeation enhancement. J Pharm Sci 90:1143–1153

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2012) Penetration enhancers. Adv Drug Deliv Rev 64:128–137

    Article  Google Scholar 

  • Willis-Goulet HS, Schmidt BA, Nicklin CF, Marsella R, Kunkle GA (2003) Comparison of serum dexamethasone concentrations in cats after oral or transdermal administration using pluronic lecithin organogel (PLO): a pilot study. Vet Dermatol 14(2):83–89

    Article  PubMed  Google Scholar 

  • Yahalom D, Koch Y, Ben-Aroya N, Fridkin M (1999) Synthesis and bioactivity of fatty acid-conjugated GnRH derivatives. Life Sci 64:1543

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Setoh K, Murakami M, Shironoshita M, Kobayashi T, Fujimoto K, Muranishi S (2003) Enhanced transdermal delivery of phenylalanyl-glycine by chemical modification with various fatty acids. Int J Pharm 250(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Yamato K, Takahashi Y, Akiyama H, Tsuji K, Onishi H, Machida Y (2009) Effect of penetration enhancers on transdermal delivery of propofol. Biol Pharm Bull 32(4):677–683

    Article  CAS  PubMed  Google Scholar 

  • Yoneto K, Ghanem AH, Higuchi WI, Peck KD, Li SK (1995) Mechanistic studies of the 1-Alkyl-2-pyrrolidones as skin permeation enhancers. J Pharm Sci 84(3):312–317

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Dong CY, So PT, Blankschtein D, Langer R (2001) In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol 117(1):16–25

    Article  CAS  PubMed  Google Scholar 

  • Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP (2010) Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv 17:238–248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayachandra Babu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babu, R.J., Chen, L., Kanikkannan, N. (2015). Fatty Alcohols, Fatty Acids, and Fatty Acid Esters as Penetration Enhancers. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47039-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47039-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47038-1

  • Online ISBN: 978-3-662-47039-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics