Skip to main content

Introduction and Structure of the Thesis

  • Chapter
  • First Online:
Methane Combustion over Lanthanum-based Perovskite Mixed Oxides

Part of the book series: Springer Theses ((Springer Theses))

  • 760 Accesses

Abstract

Natural gas burns cleaner than traditional gasoline or diesel properly to its lower carbon substance. Since natural gas is used as an automobile gas, it can suggest life series greenhouse gas (GHG) emissions profits over traditional fuels Lee and Trimm (Fuel Process Technol 42(2): 339–359) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JH, Trimm DL. Catalytic combustion of methane. Fuel Process Technol. 1995;42(2):339–59.

    CAS  Google Scholar 

  2. Machida M, Eguchi K, Arai H. Catalytic properties of BaMAl11O19-α (M = Cr, Mn, Fe Co, and Ni) for high-temperature catalytic combustion. J Catal. 1989;120(2):377–86.

    CAS  Google Scholar 

  3. Machida M, Eguchi K, Arai H. Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates. J Catal. 1990;123(2):477–85.

    CAS  Google Scholar 

  4. Seiyama T. Total oxidation of hydrocarbons on perovskite oxides. Catal Rev. 1992;34(4):281–300.

    CAS  Google Scholar 

  5. International Association for Natural Gas Vehicles (IANGV).

    Google Scholar 

  6. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A. Surface properties and catalytic performance of La1−x Sr x CrO3 perovskite-type oxides for CO and C3H6 combustion. Catal Commun. 2006;7(12):963–8.

    CAS  Google Scholar 

  7. Wang C-H, Chen C-L, Weng H-S. Surface properties and catalytic performance of La1−x Sr x FeO3 perovskite-type oxides for methane combustion. Chemosphere. 2004;57(9):1131–8.

    CAS  Google Scholar 

  8. Alifanti M, Blangenois N, Florea M, Delmon B. Supported Co-based perovskites as catalysts for total oxidation of methane. Appl Catal A. 2005;280(2):255–65.

    CAS  Google Scholar 

  9. Campagnoli E, Tavares A, Fabbrini L, et al. Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane. Appl Catal B. 2005;55(2):133–9.

    CAS  Google Scholar 

  10. Yi N, Cao Y, Su Y, Dai W-L, He H-Y, Fan K-N. Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. J Catal. 2005;230(1):249–53.

    CAS  Google Scholar 

  11. Arandiyan HR, Parvari M. Preparation of La-Mo-V mixed-oxide systems and their application in the direct synthesis of acetic acid. J Nat Gas Chem. 2008;17(3):213–24.

    CAS  Google Scholar 

  12. Khalesi A, Arandiyan HR, Parvari M. Production of Syngas by CO2 Reforming on MxLa1−x Ni0.3Al0.7O3−d (M = Li, Na, K) Catalysts. Ind Eng Chem Res. 2008;47(16):5892–8.

    CAS  Google Scholar 

  13. Arandiyan HR, Parvari M. Studies on mixed metal oxides solid solutions as heterogeneous catalysts. Braz J Chem Eng. 2009;26:63–74.

    CAS  Google Scholar 

  14. Deng J, Zhang Y, Dai H, Zhang L, He H, Au CT. Effect of hydrothermal treatment temperature on the catalytic performance of single-crystalline La0.5Sr0.5MnO3−δ microcubes for the combustion of toluene. Catal Today. 2008;139(1):82–7.

    CAS  Google Scholar 

  15. Pecchi G, Jiliberto MG, Delgado EJ, Cadús LE, Fierro JLG. Effect of B-site cation on the catalytic activity of La1−x Ca x BO3 (B = Fe, Ni) perovskite-type oxides for toluene combustion. J Chem Technol Biotechnol. 2011;86(8):1067–73.

    CAS  Google Scholar 

  16. Nishihata Y, Mizuki J, Akao T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. 2002;418(6894):164–7.

    CAS  Google Scholar 

  17. Najjar H, Lamonier J-F, Mentré O, Giraudon J-M, Batis H. Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Appl Catal B. 2011;106(1):149–59.

    CAS  Google Scholar 

  18. Marti PE, Baiker A. Influence of the A-site cation in AMnO3+x and AFeO3+x (A = La, Pr, Nd and Gd) perovskite-type oxides on the catalytic activity for methane combustion. Catal Lett. 1994;26(1):71–84.

    CAS  Google Scholar 

  19. Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl Catal. 1986;26(1):265–76.

    CAS  Google Scholar 

  20. Ciambelli P, Cimino S, De Rossi S, et al. AMnO3 (A = La, Nd, Sm) and Sm1−x Sr x MnO3 perovskites as combustion catalysts: structural, redox and catalytic properties. Appl Catal B. 2000;24(3):243–53.

    CAS  Google Scholar 

  21. Alifanti M, Kirchnerova J, Delmon B. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion. Appl Catal A Gen. 2003;245(2):231–44.

    CAS  Google Scholar 

  22. Saracco G, Geobaldo F, Baldi G. Methane combustion on Mg-doped LaMnO3 perovskite catalysts. Appl Catal B. 1999;20(4):277–88.

    CAS  Google Scholar 

  23. Song K-S, Xing Cui H, Kim SD, Kang S-K, Catalytic combustion of CH4 and CO on La1−x M x MnO3 perovskites. Catal Today. 1999;47(1):155–60.

    CAS  Google Scholar 

  24. Marchetti L, Forni L. Catalytic combustion of methane over perovskites. Appl Catal B. 1998;15(3):179–87.

    CAS  Google Scholar 

  25. Ng Lee Y, El-Fadli Z, Sapiña F, Martinez-Tamayo E, Cortés Corberán V. Synthesis and surface characterization of nanometric La1−x K x MnO3+δ particles. Catal Today. 1999; 52(1):45–52.

    Google Scholar 

  26. de Araujo GC, Lima S, Rangel MdC, Parola VL, Peña MA, García Fierro JL. Characterization of precursors and reactivity of LaNi1−x Co x O3 for the partial oxidation of methane. Catal Today. 2005; 107(1):906–912.

    Google Scholar 

  27. Machin NE, Karakaya C, Celepci A. Catalytic Combustion of Methane on La-, Ce-, and Co-Based Mixed Oxides. Energy Fuels. 2008;22(4):2166–71.

    CAS  Google Scholar 

  28. Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catal Today. 2000;59(1):19–31.

    CAS  Google Scholar 

  29. Tanaka H, Misono M. Advances in designing perovskite catalysts. Curr Opin Solid State Mater Sci. 2001;5(5):381–7.

    CAS  Google Scholar 

  30. Yang S, Maroto-Valiente A, Benito-Gonzalez M, Rodriguez-Ramos I, Guerrero-Ruiz A. Methane combustion over supported palladium catalysts: I. Reactivity and active phase. Appl Catal B. 2000;28(3):223–33.

    CAS  Google Scholar 

  31. Kirchnerova J, Klvana D. Design criteria for high-temperature combustion catalysts. Catal Lett. 2000;67(2):175–81.

    CAS  Google Scholar 

  32. Giebeler L, Kießling D, Wendt G. LaMnO3 perovskite supported noble metal catalysts for the total oxidation of methane. Chem Eng Technol. 2007;30(7):889–94.

    CAS  Google Scholar 

  33. Miao S, Deng Y. Au–Pt/Co3O4 catalyst for methane combustion. Appl Catal B. 2001;31(3):L1–4.

    CAS  Google Scholar 

  34. Wang Y, Ren J, Wang Y, et al. Nanocasted Synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. J Phys Chem C. 2008;112(39):15293–8.

    CAS  Google Scholar 

  35. Liu Y, Zheng H, Liu J, Zhang T. Preparation of high surface area La1−x A x MnO3 (A = Ba, Sr or Ca) ultra-fine particles used for CH4 oxidation. Chem Eng J. 2002;89(1):213–21.

    CAS  Google Scholar 

  36. Borovskikh L, Mazo G, Kemnitz E. Reactivity of oxygen of complex cobaltates La1−x Sr x CoO3−δ and LaSrCoO4. Solid State Sci. 2003;5(3):409–17.

    CAS  Google Scholar 

  37. Saracco G, Scibilia G, Iannibello A, Baldi G. Methane combustion on Mg-doped LaCrO3 perovskite catalysts. Appl Catal B. 1996;8(2):229–44.

    CAS  Google Scholar 

  38. Belessi VC, Ladavos AK, Pomonis PJ. Methane combustion on La-Sr-Ce-Fe-O mixed oxides: bifunctional synergistic action of SrFeO3−x and CeO x phases. Appl Catal B. 2001;31(3):183–94.

    CAS  Google Scholar 

  39. Kaliaguine S, Van Neste A, Szabo V, Gallot JE, Bassir M, Muzychuk R. Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization. Appl Catal A. 2001;209(1):345–58.

    CAS  Google Scholar 

  40. Spinicci R, Tofanari A, Delmastro A, Mazza D, Ronchetti S. Catalytic properties of stoichiometric and non-stoichiometric LaFeO3 perovskite for total oxidation of methane. Mater Chem Phys. 2002;76(1):20–5.

    CAS  Google Scholar 

  41. Alifanti M, Kirchnerova J, Delmon B, Klvana D. Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility. Appl Catal A. 2004;262(2):167–76.

    CAS  Google Scholar 

  42. Machocki A, Ioannides T, Stasinska B, et al. Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal. 2004;227(2):282–96.

    CAS  Google Scholar 

  43. Campagnoli E, Tavares A, Fabbrini L, et al. Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane. Appl Catal B. 2005;55(2):133–9.

    CAS  Google Scholar 

  44. Royer S, Alamdari H, Duprez D, Kaliaguine S. Oxygen storage capacity of La1−x BO3 perovskites relation with catalytic activity in the CH4 oxidation reaction. Appl Catal B. 2005;58(3):273–88.

    CAS  Google Scholar 

  45. Wyrwalski F, Lamonier JF, Siffert S, Aboukaïs A. Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts. Appl Catal B. 2007;70(1):393–9.

    CAS  Google Scholar 

  46. Irusta S, Pina MP, Menéndez M, Santamarı́a J. Catalytic combustion of volatile organic compounds over La-based perovskites. J Catal. 1998;179(2):400–12.

    CAS  Google Scholar 

  47. Deng M-J, Ho P-J, Song C-Z, et al. Fabrication of Mn/Mn oxide core-shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy Environ Sci. 2013;6(7):2178–85.

    CAS  Google Scholar 

  48. Niu J, Deng J, Liu W, et al. Nanosized perovskite-type oxides La1−x Sr x MO3−δ for the catalytic removal of ethylacetate. Catal Today. 2007;126(3):420–9.

    CAS  Google Scholar 

  49. O’Connell M, Norman AK, Hüttermann CF, Morris MA. Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal Today. 1999;47(1):123–32.

    Google Scholar 

  50. Agarwal DD, Goswami HS. Toluene oxidation on LaCoO3, LaFeO3 and LaCrO3 perovskite catalysts. A comparative study. React Kinet Catal Lett. 1994;53(2):441–9.

    CAS  Google Scholar 

  51. Levasseur B, Kaliaguine S. Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Appl Catal A. 2008;343(1–2):29–38.

    CAS  Google Scholar 

  52. Campagnoli E, Tavares A, Fabbrini L, et al. Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane. Appl Catal B. 2005;55(2):133–9.

    CAS  Google Scholar 

  53. Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites relationships to bulk structure and composition (valency, defect, etc.). Catal Today. 1990;8(2):175–99.

    CAS  Google Scholar 

  54. Sadakane M, Asanuma T, Kubo J, Ueda W. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem Mater. 2005;17(13):3546–51.

    CAS  Google Scholar 

  55. Xu J, Liu J, Zhao Z, et al. Three-dimensionally ordered macroporous LaCo x Fe1−x O3 perovskite-type complex oxide catalysts for diesel soot combustion. Catal Today. 2010;153(3):136–42.

    CAS  Google Scholar 

  56. Wei Y, Liu J, Zhao Z, et al. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew Chem. 2011;123(10):2374–7.

    Google Scholar 

  57. Wei Y, Liu J, Zhao Z, et al. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy Environ Sci. 2011;4(8):2959–70.

    CAS  Google Scholar 

  58. Gardner SD, Hoflund GB, Schryer DR, Schryer J, Upchurch BT, Kielin EJ. Catalytic behavior of noble metal/reducible oxide materials for low-temperature CO oxidation. 1. Comparison of catalyst performance. Langmuir. 1991;7(10):2135–9.

    CAS  Google Scholar 

  59. Choudhary VR, Uphade BS, Pataskar SG, Thite GA. Low-temperature total oxidation of methane over Ag-doped LaMO3 perovskite oxides. Chem Commun. 1996;9:1021–2.

    Google Scholar 

  60. Song KS, Kang SK, Kim SD. Preparation and characterization of Ag/MnO x /perovskite catalysts for CO oxidation. Catal Lett. 1997;49(1–2):65–8.

    CAS  Google Scholar 

  61. Li X, Dai H, Deng J, et al. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl Catal A. 2013;458(1):11–20.

    CAS  Google Scholar 

  62. Wang Y, Dai H, Deng J, et al. 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci. 2013;24(1):62–70.

    Google Scholar 

  63. Wang Y, Dai H, Deng J, et al. Three-dimensionally ordered macroporous InVO4: fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chem Eng J. 2013;226(1):87–94.

    CAS  Google Scholar 

  64. Liu Y, Dai H, Deng J, et al. PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Appl Catal B. 2013;140(1):317–26.

    Google Scholar 

  65. Li X, Dai H, Deng J, et al. Au/3DOM LaCoO3: high-performance catalysts for the oxidation of carbon monoxide and toluene. Chem Eng J. 2013;228(1):965–75.

    CAS  Google Scholar 

  66. Liu Y, Dai H, Deng J, et al. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal. 2013;305(1):146–53.

    CAS  Google Scholar 

  67. Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J Catal. 2012;287(1):149–60.

    CAS  Google Scholar 

  68. Yuan J, Dai H, Zhang L, et al. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catal Today. 2011;175(1):209–15.

    CAS  Google Scholar 

  69. Arandiyan H, Dai H, Deng J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. J Catal. 2013;307(1):327–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Arandiyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arandiyan, H. (2015). Introduction and Structure of the Thesis. In: Methane Combustion over Lanthanum-based Perovskite Mixed Oxides. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46991-0_1

Download citation

Publish with us

Policies and ethics