Skip to main content

Strömungen in komplexen Geometrien

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Dieses Kapitel ist der Behandlung komplexer Geometrien gewidmet. Die Wahl des Gittertyps, die Gittererzeugungsansätze in komplexen Geometrien, die Gittereigenschaften, die Wahl der Geschwindigkeitskomponenten und der Variablenanordnung werden diskutiert. FD- und FV-Methoden werden neu betrachtet, und die Besonderheiten komplexer Geometrien (wie nichtorthogonale, blockstrukturierte und unstrukturierte Gitter, nichtkonforme Gitterschnittstellen, Kontrollvolumen beliebiger Polyederform, überlappende Gitter usw.) werden beschrieben. Besonderes Augenmerk wird auf die Druck-Korrektur-Gleichung und die Randbedingungen gelegt. Einige anschauliche Beispiele für stationäre und instationäre, zwei- und dreidimensionale laminare Strömungen, die mit Hilfe von bereitgestellten Rechenprogrammen basierend auf Teilschritt- und SIMPLE-Algorithmus berechnet wurden, werden vorgestellt und diskutiert. Die Auswertung von Diskretisierungsfehlern und der Vergleich von Ergebnissen, die mit verschiedenen Gittertypen (getrimmte kartesische und beliebige Polyedergitter) und kommerzieller CFD-Software erzielt wurden, sind ebenfalls enthalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Die stationäre Strömung muss nicht symmetrisch sein, wenn die Geometrie symmetrisch ist; in einigen symmetrischen Geometrien – wie Diffusoren und plötzliche Kanalerweiterungen – kann eine asymmetrische stationäre Strömung sowohl in Experimenten als auch in Simulationen erhalten werden.

Literatur

  • Arcilla, A. S., Häuser, J., Eiseman, P. R. & Thompson, J. F. (Hrsg.). (1991). Numerical grid generation in computational fluid dynamics and related fields. Amsterdam, Holland: North-Holland.

    Google Scholar 

  • Baliga, B. R. & Patankar, S. V. (1983). A control-volume finite element method for two-dimensional fluid flow and heat transfer. Numer. Heat Transfer 6, 245–261.

    Google Scholar 

  • Baliga, B. R. (1997). Control-volume finite element method for fluid flow and heat transfer. In W. J. Minkowycz & E. M. Sparrow (Hrsg.), Advances in Numerical Heat Transfer (Bd. 1, S. 97–135). New York: Taylor and Francis,.

    Google Scholar 

  • Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2006). Transport phenomena (Revised 2) Aufl.). New York: Wiley.

    Google Scholar 

  • Coelho, P., Pereira, J. C. F. & Carvalho, M. G. (1991). Calculation of laminar recirculating flows using a local non-staggered grid refinement system. Int. J. Numer. Methods Fluids12, 535–557.

    Google Scholar 

  • Demirdžić, I. & Muzaferija, S. (1995). Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. MechĖngrg. 125, 235–255.

    Google Scholar 

  • Demirdžić, I. (2015). On the discretization of the diffusion term in finite-volume continuum mechanics. Numer. Heat Transfer 68, 1–10.

    Google Scholar 

  • Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics (2. Aufl., Bd. I & II). Berlin: Springer.

    Google Scholar 

  • Frey, P. J. & George, P. l. (2008). Mesh generation: Application to finite elements (2. Aufl.). New Jersey: Wiley-ISTE.

    Google Scholar 

  • Hadžić, H. (2005). Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids (PhD Dissertation). Technische Universität Hamburg-Harburg.

    Google Scholar 

  • Hanaoka, A. (2013). An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver (PhD Dissertation). University of Iowa, Iowa City, IA.

    Google Scholar 

  • Hinatsu, M. & Ferziger, J. H. (1991). Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique. Int. J. Numer. Methods Fluids 13, 971–997.

    Google Scholar 

  • Hubbard, B. J. & Chen, H. C. (1994). A Chimera scheme for incompressible viscous flows with applications to submarine hydrodynamics. In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94–2210

    Google Scholar 

  • Hubbard, B. J. & Chen, H. C. (1995). Calculations of unsteady flows around bodies with relative motion using a Chimera RANS method. In Proc. 10th ASCE Engineering Mechanics Conference. Boulder, CO: Univ. of Colorado at Boulder.

    Google Scholar 

  • Hylla, E. A. (2013). Eine Immersed Boundary Methode zur Simulation von Strömungen in komplexen und bewegten Geometrien (PhD Dissertation). Technische Universität Berlin, Berlin, Germany.

    Google Scholar 

  • Kordula, W. & Vinokur, M. (1983). Efficient computation of volume in flow predictions. AIAA J. 21, 917–918.

    Google Scholar 

  • Lilek, Ž., Muzaferija, S., Perić, M. & Seidl, V. (1997b). An implicit finite-volume method using non-matching blocks of structured grid Numer. Heat Transfer, Part B 32, 385–401.

    Google Scholar 

  • Lundquist, K. A., Chow, F. K. & Lundquist, J. K. (2012). An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Monthly Wea. Review 140 3936–3955.

    Google Scholar 

  • Maliska, C. R. & Raithby, G. D. (1984). A method for computing three-dimensional lows using non-orthogonal boundary-fitted coordinates. Int. J. Numer. Methods Fluids, 4, 518–537.

    Google Scholar 

  • Manhart, M. & Wengle, H. (1994) Large-eddy simulation of turbulent boundary layer over a hemisphere. P. Voke, L. Kleiser & J. P. Chollet (Hrsg.), Proc. 1st ERCOFTAC Workshop on Direct and Large Eddy Simulation (S. 299–310). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Masson, C., Saabas, H. J. & Baliga, R. B. (1994). Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible fluid flow. Int. J. Numer. Methods Fluids18, 1–26.

    Google Scholar 

  • Mittal, R. & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech. 37,239–261.

    Google Scholar 

  • NASA CGTUM. (2010). Chimera Grid Tools User’s Manual, Ver. 2.1. NASA Advanced Supercomputing Division. Zugriff auf https://www.nas.nasa.gov/-publi-cations-/software/-docs/-chimera/index.html

  • Oden, J. T. (2006). Finite elements of non-linear continua. Mineola, NY: Dover Publications.

    Google Scholar 

  • Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries (PhD Dissertation). Technische Universität München, Fachgebiet Hydromechanik, Mitteilungen.

    Google Scholar 

  • Perić, M. (1990). Analysis of pressure-velocity coupling on non-orthogonal grids. Numerical Heat Transfer, Part B (Fundamentals) 17, 63–82.

    Google Scholar 

  • Perng, C. Y. & Street, R. L. (1991). A coupled multigrid–domain-splitting technique for simulating incompressible flows in geometrically complex domains. Int. J. Numer. Methods Fluids 13, 269–286.

    Google Scholar 

  • Peskin, C. S. (1972). Flow patterns around heart valves: a digital computer method for solving the equations of motion (PhD Dissertation). Albert Einstein College of Medicine, Yeshiva University.

    Google Scholar 

  • Peskin, C. S. (2002). The immersed boundary method. Acta Numerica11, 479–517.

    Google Scholar 

  • Raw, M. J. (1985). A new control-volume-based finite element procedure for the numerical solution of the fluid flow and scalar transport equations (PhD Dissertation). Waterloo, Canada: University of Waterloo.

    Google Scholar 

  • Rhie, C. M. & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532.

    Google Scholar 

  • Schneider, G. E. & Raw, M. J. (1987). Control-volume finite-element method for heat transfer and fluid flow using colocated variables. 1. Computational procedure. Numer. Heat Transfer 11, 363–390.

    Google Scholar 

  • Schreck, E. & Perić, M. (1993). Computation of fluid flow with a parallel multigrid solver. Int. J. Numer. Methods Fluids 16, 303–327.

    Google Scholar 

  • Sedov, L. (1971). A course in continuum mechanics, Vol. 1 Groningen: Wolters-Noordhoft Publishing.

    Google Scholar 

  • Seidl, V., Perić, M. & Schmidt, S. (1996). Space- and time-parallel Navier-Stokes solver for 3D block-adaptive Cartesian grids. In A. Ecer, J. Periaux, N. Satofuka & S. Taylor (Hrsg.), Parallel Computational Fluid Dynamics 1995: Implementations and results using parallel computers (S. 577–584). North Holland – Elsevier.

    Google Scholar 

  • Taira, K. & Colonius, T. (2007). The immersed boundary method: A projection approach. J. Compt. Phys. 225,2118–2137.

    Google Scholar 

  • Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. (1985). Numerical grid generation – foundations and applications. New York: Elsevier.

    Google Scholar 

  • Truesdell, C. (1991). A first course in rational continuum mechanics (2. Aufl., Bd. 1). Boston: Academic Press.

    Google Scholar 

  • Tseng, Y. H. & Ferziger, J. H. (2003). A ghost-cell immersed boundary method for flow in complex geometry A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192 593–623.

    Google Scholar 

  • Xing-Kaeding, Y. (2006). Unified approach to ship seakeeping and maneuvering by a RANSE method (PhD Dissertation, TU Hamburg-Harburg, Hamburg). Zugriff auf http://doku.b.tu-harburg.de/volltexte/2006/303/pdf/Xing-Kaeding-thesis.pdf

  • Zang, Y. & Street, R. L. (1995). A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int. Numer. Methods Fluids 20, 341–361.

    Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L. & Nithiarasu, P. (2005). The finite element method for fluid dynamics (6. Aufl.). Burlington, MA: Butterworth- Heinemann (Elsevier).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Strömungen in komplexen Geometrien. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_9

Download citation

Publish with us

Policies and ethics