Skip to main content

Lösung der Navier-Stokes-Gleichungen: Teil 2

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Wir haben Diskretisierungsmethoden für die verschiedenen Terme in den Transportgleichungen beschrieben. Die Verbindung zwischen Druck- und Geschwindigkeitskomponenten in inkompressiblen Strömungen wurde demonstriert und es wurden einige Lösungsmethoden vorgestellt. Viele andere Methoden zur Lösung der Navier-Stokes-Gleichungen können entwickelt werden. Es ist unmöglich, sie alle hier zu beschreiben. Die meisten von ihnen haben jedoch Elemente mit den bereits beschriebenen Methoden gemeinsam. Die Vertrautheit mit diesen Methoden sollte es dem Leser ermöglichen, die anderen zu verstehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Beide Diskretisierungen können formal mit FV-Methoden hergeleitet werden, wobei die Unterschiede darin bestehen, wie die Flüsse durch die KV-Seiten definiert werden. Siehe z. B. Ye et al. (1999) und C. A. J. Fletcher (1991), V.I, Abschn. 5.2.

  2. 2.

    Dies trifft zu, wo Dirichlet-Randbedingungen für Geschwindigkeit gelten; am Ausstromrand, wo die Geschwindigkeit eine Neumann-Randbedingung hat, gibt es je nach Strömung eine Reihe von Optionen für Druckrandbedingungen. Die Dokumentation von professionellen Rechenprogrammen beschreibt in der Regel diese Optionen. Siehe auch Sani et al. (2006).

  3. 3.

    Ditto

Literatur

  • Abe, K., Jang, Y. J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow,24, 181-198.

    Article  Google Scholar 

  • Armfield, S. & Street, R. (2000). Fractional-step methods for the Navier-Stokes equations on non-staggered grids. ANZIAM J.,42 (E), C134-C156.

    Google Scholar 

  • Armfield, S. & Street, R. (2003). The pressure accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. ANZIAM J.,44 (E), C20-C39.

    Google Scholar 

  • Armfield, S. & Street, R. (2004). Modified fractional-step methods for the Navier-Stokes equations ANZIAM J.,45 (E), C364-C377.

    Google Scholar 

  • Armfield, S. & Street, R. (2005). A comparison of staggered and non-staggered grid Navier-Stokes solutions for the 8:1 cavity natural convection flow. ANZIAM J.,46 (E), C918-C934.

    Google Scholar 

  • Armfield, S., Williamson, N., Kirkpatrick, M. und Street, R. (2010). A divergence free fractional-step method for the Navier-Stokes equations on non-staggered grids. ANZIAM J.,51 (E), C654-C667.

    Google Scholar 

  • Armfield, S. (1991). Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids. Computers Fluids,20, 1-17.

    Article  ADS  Google Scholar 

  • Armfield, S. & Street, R. (2002). An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. Int. J. Numer. Methods Fluids,38, 255-282.

    Article  ADS  Google Scholar 

  • Choi, H. & Moin, P. (1994). Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys.,113, 1-4.

    Article  ADS  Google Scholar 

  • Erturk, E. (2009). Discussions on driven cavity flow. Int. J. Numer. Methods Fluids,60, 275-294.

    Article  ADS  MathSciNet  Google Scholar 

  • Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics (2. Aufl., Bd. I & II). Berlin: Springer.

    Google Scholar 

  • Fringer, O. B., Armfield, S. W. & Street, R. L. (2003). A nonstaggered curvilinear grid pressure correction method applied to interfacial waves In Second Inter. Conf. Heat Transfer, Fluid Mech., and Thermodyn., HEFAT 2003, Paper FO1. (6 pages)

    Google Scholar 

  • Ghia, U., Ghia, K. N. & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys.,48, 387-411.

    Article  ADS  Google Scholar 

  • Gresho, P. M. (1990). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory Int. J. Numer. Methods Fluids,11, 587-620.

    Article  MathSciNet  Google Scholar 

  • Ham, F. & Iaccarino, G. (2004). Energy conservation in collocated discretization schemes on unstructured grids. Ann. Research Briefs. Stanford, CA: Center for Turbulence Research.

    Google Scholar 

  • Hirt, C. W. & Harlow, F. H. (1967). A general corrective procedure for the numerical solution of initial-value problems. J. Comput. Phys.,2, 114-119.

    Article  ADS  Google Scholar 

  • Hortmann, M., Perić, M. & Scheuerer, G. (1990). Finite volume multigrid prediction of laminar natural convection: bench-mark solutions. Int. J. Numer. Methods Fluids,11, 189-207.

    Article  ADS  Google Scholar 

  • Kim, J. & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.,59, 308-323.

    Article  ADS  MathSciNet  Google Scholar 

  • Kirkpatrick, M. P. & Armfield, S. W. (2008). On the stability and performance of the projection-3 method for the time integration of the Navier-Stokes equations. ANZIAM J.,49, (EMAC2007), C559-C575.

    Article  MathSciNet  Google Scholar 

  • Lilek, Ž. & Perić, M. (1995). A fourth-order finite volume method with colocated variable arrangement. Computers Fluids,24, 239-252.

    Article  Google Scholar 

  • Lu, H. & Porté-Agel, F. (2011). Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids,23, 065101).

    Google Scholar 

  • Pascau, A. (2011). Cell face velocity alternatives in a structured colocated grid for the unsteady Navier-Stokes equations. Int. J. Numer. Methods Fluids,65. 812–833.

    Article  ADS  MathSciNet  Google Scholar 

  • Rhie, C. M. & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J.,21, 1525-1532.

    Article  ADS  Google Scholar 

  • Sani, R. L., Shen, J., Pironneau, O. & Gresho, P. M. (2006). Pressure boundary condition for the time-dependent incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids,50, 673-682.

    Article  ADS  MathSciNet  Google Scholar 

  • Shen, J. (1993). A remark on the Projection-3 method. Int. J. Numer. Methods Fluids,16, 249-253.

    Article  ADS  MathSciNet  Google Scholar 

  • Tuković, Ž., Perić, M. & Jasak, H. (2018). Consistent second-order time-accurate non-iterative PISO algorithm. Computers Fluids,166, 78-85.

    Article  MathSciNet  Google Scholar 

  • van der Wijngaart, R. F. (1990). Composite-grid techniques and adaptive mesh refinement in computational fluid dynamics (PhD Dissertation). Stanford CA, Stanford University.

    Google Scholar 

  • Ye, T., Mittal, R., Udaykumar, H. S. et al. Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys.,156, 209-240.

    Article  ADS  MathSciNet  Google Scholar 

  • Zang, Y., Street, R. L. & Koseff, J. R. (1994). A non-staggered grid, fractional-step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comput. Phys., 114, 18-33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Lösung der Navier-Stokes-Gleichungen: Teil 2. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_8

Download citation

Publish with us

Policies and ethics