Skip to main content

Lösung der Navier-Stokes-Gleichungen: Teil 1

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Die zusätzliche Komplexität der Navier-Stokes-Gleichungen und besondere Merkmale für inkompressible Strömungen werden in diesem und im nächsten Kapitel betrachtet; hier behandeln wir grundlegende Fragen, die Merkmale der Gleichungen und die Lösungsmethoden. Die versetzten und nichtversetzten Anordnungen von Variablen, die Druckgleichung und die Druck-Geschwindigkeits-Kopplung für inkompressible Strömungen unter Verwendung der Teilschritt- und SIMPLE-Algorithmen werden ausführlich beschrieben. Andere Ansätze (der PISO-Algorithmus, Stromfunktion-Wirbelstärke und künstliche Kompressibilität) werden ebenfalls kurz beschrieben. Die Anfangs- und Randbedingungen für die Navier-Stokes-Gleichungen und ihre Implementierung bei kartesischen Gittern werden ebenfalls behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strömungen, in denen die Dichte des Fluids mit der Höhe in einem Gravitationsfeld variiert, werden als geschichtet oder stratifiziert bezeichnet, und die Strömung kann schweres Fluid nach oben und leichtes Fluid nach unten tragen, sodass es nun eine andere Dichte als seine Umgebung hat; das Fluid hat dann nicht nur kinetische Energie, sondern auch Energie als Folge seiner Position, genannt Potentialenergie. Das Ergebnis sind Auftriebskräfte, die später in diesem Kapitel angesprochen werden und sowohl in der Meteorologie als auch in der Ozeanographie sehr wichtig sind.

  2. 2.

    In diesem Fall wird die Extrapolation \(p^{n+1}=(3/2) p^{n+1/2}-(1/2) p^{n-1/2}\) verwendet.

  3. 3.

    Gekoppelte (oder monolithische) Löser sind ebenfalls verfügbar und die meisten kommerziellen Programme bieten sie inzwischen an; die Diskussion über Solver-Alternativen findet man in der Programmdokumentation und in der Literatur, z. B. Heil et al. (2008) oder Malinen (2012). Siehe auch Kap. 11 für eine kurze Beschreibung einer solchen Methode.

  4. 4.

    Diese Beziehung wurde zuerst von Raithby und Schneider (1979) hergeleitet und später von Perić (1985) mit unterschiedlichen Argumenten wiederentdeckt.

Literatur

  • Abe, K., Jang, Y. J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow,24, 181-198.

    Article  Google Scholar 

  • Armfield, S. & Street, R. (1999). The fractional-step method for the Navier-Stokes equations on staggered grids: The accuracy of three variations. J. Comput. Phys.,153, 660–665.

    Google Scholar 

  • Armfield, S. & Street, R. (2000). Fractional-step methods for the Navier-Stokes equations on non-staggered grids. ANZIAM J.,42 (E), C134–C156.

    Google Scholar 

  • Armfield, S. & Street, R. (2002). An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. Int. J. Numer. Methods Fluids,38, 255–282.

    Google Scholar 

  • Armfield, S. & Street, R. (2003). The pressure accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. ANZIAM J.,44 (E), C20–C39.

    Google Scholar 

  • Armfield, S. & Street, R. (2004). Modified fractional-step methods for the Navier-Stokes equations. ANZIAM J.,45 (E), C364–C377.

    Google Scholar 

  • Armfield, S. (1991). Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids. Computers Fluids,20, 1–17.

    Google Scholar 

  • Armfield, S. (1994). Ellipticity, accuracy, and convergence of the discrete Navier-Stokes equations. J. Comput. Phys.,114, 176–184.

    Google Scholar 

  • Beam, R. M. & Warming, R. F. (1976). An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys,22, 87–110.

    Google Scholar 

  • Calhoun, D. (2002). A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J. Comput. Phys,176, 231–275.

    Google Scholar 

  • Caretto, L. S., Gosman, A. D., Patankar, S. V. & Spalding, D. B. (1972). Two calculation procedures for steady three-dimensional flows with recirculation. In Proc. Third Int. Conf. Numer. Methods Fluid Dyn. Paris.

    MATH  Google Scholar 

  • Chang, W., Giraldo, F. & Perot, B. (2002). Analysis of an exact fractional-step method. J. Comput. Phys.,180, 183–199.

    Google Scholar 

  • Chorin, A. J. (1967). A numerical method for solving incompressible viscous flow problems. J. Comput. Phys.,2, 12–26.

    Google Scholar 

  • Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Math. Comput.,22, 745–762.

    Google Scholar 

  • Donea, J., Huerta, A., Ponthot, J. P. & Rodríguez-Ferran, A. (2004). Arbitrary Lagrangian-Eulerian methods. Chap. 14 In. Encyclopedia of Comput. Mech. (Bd. 1: Fundamentals, S. 413–437).

    Google Scholar 

  • Ferziger, J. H. (1998). Numerical methods for engineering application (2. Aufl.). New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Gresho, P. M. (1990). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory. Int. J. Numer. Methods Fluids,11, 587–620.

    Google Scholar 

  • Harlow, F. H. & Welsh, J. E. (1965). Numerical calculation of time dependent viscous incompressible flow with free surface Phys. Fluids,8, 2182–2189.

    ADS  MATH  Google Scholar 

  • Heil, M., Hazel, A. L. & Boyle, J. (2008). Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput. Mech.,43, 91–101.

    Google Scholar 

  • Hirt, C. W., Amsden, A. A. & Cook, J. L. (1997). An arbitrary Lagrangean-Eulerian computing method for all flow speeds. J. Comput. Phys,135, 203-216. (Reprinted from 14, 1974, 227–253)

    Google Scholar 

  • Issa, R. I. (1986). Solution of implicitly discretized fluid flow equations by operator-splitting. J. Comput. Phys.,62, 40–65.

    Google Scholar 

  • Kim, D. & Choi, H. (2000). A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys.,162, 411–428.

    Google Scholar 

  • Kim, J. & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.,59, 308–323.

    Google Scholar 

  • Kwak, D. & Kiris, C. C. (2011). Artificial compressibility method. Chap. 4. In Computation of viscous incompressible flows. Dordrecht: Springer.

    Google Scholar 

  • Kwak, D., Chang, J. L. C., Shanks, S. P. & Chakravarthy, S. R. (1986). A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J.,24, 390–396.

    Google Scholar 

  • Louda, P., Kozel, K. & Příhoda, J. (2008). Numerical solution of 2D and 3D viscous incompressible steady and unsteady flows using artificial compressibility method. Int. J. Numer. Methods Fluids,56, 1399–1407.

    Google Scholar 

  • Mahesh, K., Constantinescu, G. & Moin, P. (2004). A numerical method for large-eddy simulation in complex geometries. J. Comput Phys.,197, 215-240.

    Article  ADS  Google Scholar 

  • Malinen, M. (2012). The development of fully coupled simulation software by reusing segregated solvers. Appl. Parallel and Sci. Comput., Part 1, PARA 2010, LNCS 7133, 242–248.

    Google Scholar 

  • Moin, P. (2010). Fundamentals of engineering numerical analysis (2. Aufl.). Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  • Patankar, S. V. & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer,15, 1787–1806.

    Google Scholar 

  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Perić, M. (1985). A finite volume method for the prediction of three-dimensional fluid flow in complex ducts (PhD Dissertation). London: Imperial College.

    Google Scholar 

  • Raithby, G. D. & Schneider, G. E. (1979). Numerical solution of problems in incompressible fluid flow: treatment of the velocity-pressure coupling. Numer. Heat Transfer,2, 417–440.

    Google Scholar 

  • Spotz, W. (1998). Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfunction vorticity. Int. J. Numer. Methods Fluids,28, 737–757.

    Google Scholar 

  • Spotz, W. F. & Carey, G. F. (1995). High-order compact scheme for the steady stream-function vorticity equations. Int. J. Numer. Methods Engrg.,38, 3497-3512.

    Article  MathSciNet  Google Scholar 

  • Van Doormal, J. P. & Raithby, G. D. (1984). Enhancements of the SIMPLE method for predicting incompressible fluid flows Numer. Heat Transfer,7, 147–163.

    Google Scholar 

  • Wakashima, S. & Saitoh, T. S. (2004). Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method. Int. J. Heat Mass Transfer,47, 853-864.

    Article  Google Scholar 

  • Weinan, E. & Liu, J. g. (1997). Finite difference methods for 3D viscous incompressible flows in the vorticity – vector potential formulation on nonstaggered grids. J. Comput. Phys.,138, 57–82.

    Google Scholar 

  • Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys.,156, 209–240.

    Google Scholar 

  • Zang, Y., Street, R. L. & Koseff, J. R. (1994). A non-staggered grid, fractional-step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comput. Phys.,114, 18–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Lösung der Navier-Stokes-Gleichungen: Teil 1. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_7

Download citation

Publish with us

Policies and ethics