Skip to main content

Einführung in numerische Methoden

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Eine Einführung in numerische Lösungsverfahren wird in diesem Kapitel gegeben. Die Vor- und Nachteile numerischer Verfahren werden diskutiert, und die Möglichkeiten und Grenzen des rechnerischen Ansatzes werden skizziert. Daran schließt sich eine Beschreibung der Komponenten eines numerischen Lösungsverfahrens und ihrer Eigenschaften an. Zuletzt wird eine kurze Beschreibung der grundlegenden Berechnungsmethoden (Finite Differenzen, Finite Volumen und Finite Elemente) gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arcilla, A. S., Häuser, J., Eiseman, P. R. & Thompson, J. F. (Hrsg.). (1991). Numerical grid generation in computational fluid dynamics and related fields, Amsterdam, Holland: North-Holland.

    Google Scholar 

  • Berndt, P. (1973). Bedeutung der Variationsrechnung in der Strömungsmechanik und ihre Anwendung bei kompressiblen Potentialströmungen. Dissertation, Technische Universität München.

    Google Scholar 

  • Donea, J. & Huerta, A. (2003). Finite element methods for flow problems. Chichester, England (available at Wiley Online Library): Wiley.

    Book  Google Scholar 

  • Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics (2. Aufl.,Bd. I & II). Berlin: Springer.

    Google Scholar 

  • Glowinski, R. & Pironneau, O. (1992). Finite element methods for Navier-Stokes equations. Annu. Rev. Fluid Mech. 24, 167–204.

    Article  ADS  MathSciNet  Google Scholar 

  • Hadžić, H. (2005). Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids PhD Dissertation. Technische Universität Hamburg-Harburg.

    Google Scholar 

  • Hinatsu, M. & Ferziger, J. H. (1991). Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique. Int. J. Numer. Methods Fluids, 13, 971–997.

    Article  ADS  Google Scholar 

  • Hubbard, B. J. & Chen, H. C. (1994). A Chimera scheme for incompressible viscous flows with applications to submarine hydrodynamics In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94-2210

    Google Scholar 

  • Hubbard, B. J. & Chen, H. C. (1995). Calculations of unsteady flows around bodies with relative motion using a Chimera RANS method In Proc. 10th ASCE Engineering Mechanics Conference. Boulder, CO: Univ. of Colorado at Boulder.

    Google Scholar 

  • Oden, J. T. (2006). Finite elements of non-linear continua Mineola, NY: Dover Publications.

    Google Scholar 

  • Perng, C. Y. & Street, R. L. (1991). A coupled multigrid – domain-splitting technique for simulating incompressible flows in geometrically complex domains Int. J. Numer. Methods Fluids, 13, 269–286.

    Google Scholar 

  • Richtmyer, R. D. & Morton, K. W. (1967). Difference methods for initial value problems. New York: Wiley.

    MATH  Google Scholar 

  • Senocak, I. & Jacobsen, D. Acceleration of complex terrain wind predictions using many-core computing hardware. In 5th Intl. Symp. Comput. Wind Engrg. (CWE2010). Intl. Assoc. for Wind Engrg. Paper 498

    Google Scholar 

  • Street, R. L. (1973). Analysis and solution of partial differential equations. Monterey, CA: Brooks/Cole Pub. Co.

    Google Scholar 

  • Thibault, J. C. & Senocak, I. (2009). CUDA implementation of a Navier-Stokes solver on multi-GPU desktop platforms for incompressible flows. In 47th AIAA Aerospace Sci. Mtg., AIAA Paper 2009-758.

    Google Scholar 

  • Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. (1985). Numerical grid generation – foundations and applications New York: Elsevier.

    Google Scholar 

  • Tu, J. Y. & Fuchs, L. (1992). Overlapping grids and multigrid methods for three-dimensional unsteady flow calculation in IC engines. Int. J. Numer. Methods Fluids, 15, 693–714.

    Article  ADS  Google Scholar 

  • Zang, Y. & Street, R. L. (1995). A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int. Numer. Methods Fluids, 20, 341–361.

    Article  Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L. & Nithiarasu, P. (2005). The finite element method for fluid dynamics (6. Aufl.). Burlington, MA: Butterworth- Heinemann (Elsevier).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Einführung in numerische Methoden. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_2

Download citation

Publish with us

Policies and ethics