Skip to main content

Spezielle Themen

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

In diesem abschließenden Kapitel werden einige spezielle Themen behandelt. Dazu gehören: Wärmeaustausch zwischen Strömungen getrennt durch Wände; Strömungen mit freien Oberflächen oder variablen Fluideigenschaften; meteorologische und ozeanographische Anwendungen; die Behandlung beweglicher Ränder, die bewegliche Gitter erfordern; die Simulation von Kavitation; Fluid-Struktur-Wechselwirkung. Spezielle Effekte in Strömungen mit Wärme- und Massentransfer, Zwei-Phasen-Strömungen und Strömungen mit chemischen Reaktionen werden kurz diskutiert. Die Zwangsmethoden, wie sie z.B. zur Verhinderung der Wellenreflexion an den Rändern des Lösungsgebiets verwendet werden, werden ebenfalls beschrieben. Anhand von Beispielrechnungen mit kommerzieller CFD-Software werden diese speziellen Themen erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gilmanov et al. (2015) berichten über FSI für mehrere Probleme, einschließlich einer Herzklappe; LES mit einer Teilschrittmethode.

Literatur

  • Abe, K., Jang, Y.-J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow, 24, 181–198.

    Article  Google Scholar 

  • Armfield, S. & Street, R. (2005). A comparison of staggered and non-staggered grid Navier-Stokes solutions for the 8:1 cavity natural convection flow. ANZIAM J., 46 (E), C918–C934.

    Google Scholar 

  • Beig, S. A. & Johnsen, E. (2015). Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing. J. Comput. Phys, 302, 548–566.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berchiche, N., Östman, A., Hermundstad, O. A. & Reinholdtsen, S.-A. (2015). Experimental validation of CFD simulations of free-fall lifeboat launches in regular waves. Ship Technology Research, 62, 148–158.

    Article  Google Scholar 

  • Brackbill, J. U., Kothe, D. B. & Zemaach, C. (1992). A continuum method for modeling surface tension. J. Comput. Phys., 100, 335–354.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bunner, B. & Tryggvason, G. (1999). Direct numerical simulations of three-dimensional bubbly flows. Phys. Fluids, 11, 1967–1969.

    Article  ADS  MATH  Google Scholar 

  • Cebeci, T. & Bradshaw, P. (1984). Physical and computational aspects of convective heat transfer. New York: Springer.

    Book  MATH  Google Scholar 

  • Chen, S., Johnson, D. B., Raad, P. E. & Fadda, D. (1997). The surface marker and micro-cell method. Intl. J. Num. Methods Fluids, 25, 749–778.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Crowe, C., Sommerfeld, M. & Tsuji, Y. (1998). Multiphase flows with droplets and particles. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Deike, L., Melville, W. K. & Popinet, S. (2016). Air entrainment and bubble statistics in breaking waves. J. Fluid Mech., 801, 91–129.

    Article  ADS  MathSciNet  Google Scholar 

  • Demirdžić, I. (2016). A fourth-order finite volume method for structural analysis. Appl. Math. Modelling, 40, 3104–3114.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirdžić, I. & Muzaferija, S. (1994). Finite volume method for stress analysis in complex domains. Int. J. Numer. Methods Engrg., 37, 3751–3766.

    Article  MATH  Google Scholar 

  • Demirdžić, I. & Muzaferija, S. (1995). Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Engrg., 125, 235–255.

    Article  ADS  Google Scholar 

  • Demirdžić, I. & Perić, M. (1988). Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids, 8, 1037–1050.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Demirdžić, I. & Perić, M. (1990). Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Methods Fluids, 10, 771–790.

    Article  ADS  MATH  Google Scholar 

  • Demirdžić, I., Muzaferija, S. & Perić, M. (1997). Benchmark solutions of some structural analysis problems using finite-volume method and multigrid acceleration. Int. J. Numer. Meth. Engrg., 40, 1893–1908.

    Article  Google Scholar 

  • Durst, F., Kadinskii, L., Perić, M. & Schäfer, M. (1992). Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver. J. Crystal Growth, 125, 612–626.

    Article  ADS  Google Scholar 

  • Enright, D., Fedkiw, R., Ferziger, J. H. & Mitchell, I. (2002). A hybrid particle level set method for improved interface capturing. J. Comput. Phys., 183, 83–116.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Farmer, J., Martinelli, L. & Jameson, A. (1994). Fast multigrid method for solving incompressible hydrodynamic problems with free surfaces. AIAA J., 32, 1175–1182.

    Article  ADS  MATH  Google Scholar 

  • Fenton, J. D. (1985). A fifth-order Stokes theory for steady waves. J. Waterway, Port, Coastal, Ocean Eng., 111, 216–234.

    Article  Google Scholar 

  • Forbes, L. K. (1988). Critical free surface flow over a semicircular obstruction. J. Engrg. Math., 22, 3–13.

    Article  MATH  Google Scholar 

  • Galpin, P. F. & Raithby, G. D. (1986). Numerical solution of problems in incompressible fluid flow: treatment of the temperature-velocity coupling. Numer. Heat Transfer, 10, 105–129.

    Article  ADS  MATH  Google Scholar 

  • Gilmanov, A., Le, T. B. & Sotiropoulos, F. (2015). A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys., 300, 814–843.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gomes, J. P. & Lienhart, H. (2010). Fluid-structure interaction-induced oscillation of flexible structures in laminar and turbulent flows. J. Fluid Mech., 715, 537–572.

    Article  ADS  MATH  Google Scholar 

  • Gomes, J. P., Yigit, S., Lienhart, H. & Schäfer, M. (2011). Experimental and numerical study on a laminar fluid-structure interaction reference test case. J. Fluids & Struc., 27, 43–61.

    Article  ADS  Google Scholar 

  • Hadžić, H. (2005). Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids (PhD Dissertation). Technische Universität Hamburg-Harburg.

    Google Scholar 

  • Harlow, F. H. & Welsh, J. E. (1965). Numerical calculation of time dependent viscous incompressible flow with free surface. Phys. Fluids, 8, 2182–2189.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Harvie, D. J. E., Davidson, M. R. & Rudman, M. (2006). An analysis of parasitic current generation in Volume-of-Fluid simulations. Appl. Math. Modelling, 30, 1056–1066.

    Article  MATH  Google Scholar 

  • Heinke, H. J. (2011). Potsdam propellet test case (Bericht Nr. 3753). Potsdam, Germany: SVA Potsdam.

    Google Scholar 

  • Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Siebesma, A. P. & amp et al. (2010). Formulation of the Dutch atmospheric large-eddy simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415–444.

    Google Scholar 

  • Hino, T. (1992). Computation of viscous flows with free surface around an advancing ship. In Proc. 2nd Osaka Int. Colloquium on Viscous Fluid Dynamics in Ship and Ocean Technology. Osaka Univ.

    Google Scholar 

  • Hirt, C. W. & Nichols, B. D. (1981). Volume of fluid (VOF) method for dynamics of free boundaries. J. Comput. Phys., 39, 201–221.

    Article  ADS  MATH  Google Scholar 

  • Hodges, B. R. & Street, R. L. (1999). On simulation of turbulent nonlinear free-surface flows. J. Comput. Phys., 151, 425–457.

    Article  ADS  MATH  Google Scholar 

  • Ishii, M. (1975). Thermo-fluid dynamic theory of two-phase flow. Paris: Eyrolles.

    MATH  Google Scholar 

  • Ishii, M. & Hibiki, T. (2011). Thermo-fluid dynamics of two-phase flow. New York: Springer.

    Book  MATH  Google Scholar 

  • Johnsen, E. & Ham, F. (2012) . Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys., 231, 5705–5717.

    Article  ADS  MathSciNet  Google Scholar 

  • Kadinski, L. & Perić, M. (1996). Numerical study of grey-body surface radiation coupled with fluid flow for general geometries using a finite volume multigrid solver. Int. J. Numer. Meth. Heat Fluid Flow, 6, 3–18.

    Article  MATH  Google Scholar 

  • Kawamura, T. & Miyata, H. (1994). Simulation of nonlinear ship flows by density-function method. J. Soc. Naval Architects Japan, 176, 1–10.

    Article  Google Scholar 

  • Kays, W. M. & Crawford, M. E. (1978). Convective heat and mass transfer. New York: McGraw-Hill.

    Google Scholar 

  • Khani, S. & Porté-Agel, F. (2017). A modulated-gradient parameterization for the large-eddy simulation of the atmospheric boundary layer using the Weather Research and Forecasting model. Boundary-Layer Meteorol. 165, 385–404.

    Article  ADS  Google Scholar 

  • Koshizuka, S., Tamako, H. & Oka, Y. (1995). A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics J., 4, 29–46.

    Google Scholar 

  • Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. (1994). Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys., 113, 134–147.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leonard, B. P. (1997). Bounded higher-order upwind multidimensional finite-volume convection-diffusion algorithms, Chap. 1. In W. J. Minkowycz & E. M. Sparrow (Hrsg.), Advances in Numerical Heat Transfer (S. 1–57). New York: Taylor and Francis.

    Google Scholar 

  • Lilek, Ž. (1995). Ein Finite-Volumen Verfahren zur Berechnung von inkompressiblen und kompressiblen Strömungen in komplexen Geometrien mit beweglichen Rändern und freien Oberflächen (PhD Dissertation). University of Hamburg, Germany.

    Google Scholar 

  • McMurtry, P. A., Jou, W. H., Riley, J. J. & Metcalfe, R. W. (1986). Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA J., 24, 962–970.

    Article  ADS  Google Scholar 

  • Mellor, G. L. & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophysics, 20, 851–875.

    Article  ADS  Google Scholar 

  • Mørch, H. J., Enger, S., Perić, M. & Schreck, E. (2008). Simulation of lifeboat launching under storm conditions. In 6th international conference on CFD in oil and gas, metallurgical and process industries. Trondheim, Norway.

    Google Scholar 

  • Mørch, H. J., Perić, M., Schreck, E., el Moctar, O. & Zorn, T. (2009). Simulation of Flow and Motion of Lifeboats. In ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii.

    Google Scholar 

  • Morrison, H. & Pinto, J. O. (2005). Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 1880–1900.

    Article  ADS  Google Scholar 

  • Mortazavi, M., Le Chenadec, V., Moin, P. & Mani, A. (2016). Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech., 797, 60–94.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Muzaferija, S. & Perić, M. (1997). Computation of free-surface flows using finite volume method and moving grids. Numer. Heat Transfer,Part B, 32, 369–384.

    Google Scholar 

  • Muzaferija, S. & Perić, M. (1999). Computation of free surface flows using interface-tracking and interface-capturing methods. In O. Mahrenholtz & M. Markiewicz (Hrsg.), Nonlinear Water Wave Interaction, Chap. 2 (S. 59–100). Southampton: WIT Press.

    Google Scholar 

  • Osher, S. & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Osher, S. & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 12–49.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Patankar, S. V. & Spalding, D. B. (1977) Genmix: A general computer program for two-dimensional parabolic phenomena. Oxford: Pergamon Press.

    Google Scholar 

  • Perić R. & Abdel-Maksoud, M. (2018). Analytical prediction of reflection coefficients for wave absorbing layers in flow simulations of regular free-surface waves. Ocean Engineering, 47, 132-147.

    Article  Google Scholar 

  • Perié R. (2019). Minimierung unerwünschter Wellenreflexionen an den Gebietsrändern bei Strömungssimulationen mit Forcing Zones (PhD Dissertation). Technische Universität Hamburg, Germany.

    Google Scholar 

  • Peters, N. (2000). Turbulent Combustion. Cambridge: Cambridge Univ. Press.

    Book  MATH  Google Scholar 

  • Poinsot, T., Veynante, D. & Candel, S. (1991). Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech., 228, 561–605.

    ADS  Google Scholar 

  • Qin, Z., Delaney, K., Riaz, A. & Balaras, E. (2015). Topology preserving advection of implicit interfaces on Cartesian grids. J. Comput. Phys., 290, 219–238.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Raithby, G. D., Xu, W.- X. & Stubley, G. D. (1995). Prediction of incompressible free surface flows with an element-based finite volume method. Comput. Fluid Dynamics J., 4, 353–371.

    Google Scholar 

  • Reinecke, M., Hillebrandt, W., Niemeyer, J. C., Klein, R. & Gröbl, A. (1999). A new model for deflagration fronts in reactive fluids. Astronomy and Astrophysics, 347, 724–733.

    ADS  Google Scholar 

  • Rider, W. J. & Kothe, D. B. (1998). Reconstructing volume tracking. J. Comput. Phys., 141, 112–152.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sauer, J. (2000). Instationär kavitierende Strömungen - ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik (PhD Dissertation). University of Karlsruhe, Germany.

    Google Scholar 

  • Scardovelli, R. & Zaleski, S. (1999). Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech., 31, 567–603.

    Article  ADS  MathSciNet  Google Scholar 

  • Schalkwijk, J., Griffith, E., Post, F. H. & Jonker, H. J. J. (2012a). High-performance simulations of turbulent clouds on a desktop PC: Exploiting the GPU. Bull. Amer. Met. Soc., 93, 307–314.

    Google Scholar 

  • Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. & van Meijgaard, E. (2015). Weather forecasting using GPU-based large-eddy simulations. Bull. Amer. Met. Soc., 96, 715–723.

    Article  ADS  Google Scholar 

  • Schnerr, G. H. & Sauer, J. (2001). Physical and Numerical Modeling of Unsteady Cavitation Dynamics. In Fourth International Conference on Multiphase Flow. New Orleans, USA.

    Google Scholar 

  • Sethian, J. A. (1996). Level set methods. Cambridge: Cambridge U. Press.

    MATH  Google Scholar 

  • Shabana, A. A. (2013). Dynamics of Multibody Systems (4. Aufl.). New York, USA: Cambridge U. Press.

    Book  MATH  Google Scholar 

  • Shi, X., Hagen, H. L., Chow, F. K., Bryan, G. H. & Street, R. L. (2018a). Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611–637.

    Article  ADS  Google Scholar 

  • Shi, X., Chow, F. K., Street, R. L. & Bryan, G. H. (2018b). An evaluation of LES turbulence models for scalar mixing in the stratocumulus-capped boundary layer. J. Atmos. Sci., 75, 1499–1507.

    Article  ADS  Google Scholar 

  • Skyllingstad, E. D. & Samelson, R. M. (2012). Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Ocean., 42, 1701–1716.

    Article  ADS  Google Scholar 

  • Smiljanovski, V., Moser, V. & Klein, R. (1997). A capturing-tracking hybrid scheme for deflagration discontinuities. Combustion Theory and Modelling, 1, 183–215.

    Article  ADS  MATH  Google Scholar 

  • Spalding, D. B. (1978). General theory of turbulent combustion. J. Energy, 2, 16–23.

    Article  Google Scholar 

  • Sullivan, P. P., C., W. J., Patton, E. G., Jonker, H. J. J. & Mironov, D. V. (2016). Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci., 73, 1815–1840.

    Google Scholar 

  • Sussman, M. (2003). A second-order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys., 187, 110–136.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sussman, M., Smereka, P. & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 114, 146–159.

    Article  ADS  MATH  Google Scholar 

  • Thé, J. L., Raithby, G. D. & Stubley, G. D. (1994). Surface-adaptive finite-volume method for solving free-surface flows. Numer. Heat Transfer, Part B, 26, 367–380.

    Article  ADS  Google Scholar 

  • Tregde, V. (2015). Compressible air effects in CFD simulations of free fall lifeboat drop. In it ASME 34th International Conference on Ocean, Offshore and Arctic Engineering. St John’s, Newfoundland, Canada.

    Google Scholar 

  • Tryggvason, G. & Unverdi, S. O. (1990). Computations of 3-dimensional Rayleigh-Taylor instability. Phys. Fluids A, 2 656–659.

    Article  ADS  Google Scholar 

  • Ubbink, O. (1997). Numerical prediction of two fluid systems with sharp interfaces. (PhD Dissertation). University of London, London.

    Google Scholar 

  • Vukčević, V., Jasak, H. & Gatin, I. (2017). Implementation of the ghost fluid method for free surface flows in polyhedral finite volume framework. Computers Fluids, 153, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Washington, W. M. & Parkinson, C. L. (2005). An introduction to three-dimensional climate modeling (2. Aufl.). Sausalito, CA: University Sci. Books.

    MATH  Google Scholar 

  • Weymouth, G. & Yue, D. K. P. (2010). Conservative volume-of-fluid method for free-surface simulations on Cartesian grids. J. Comput. Phys., 229, 2853–2865.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Williams, F. A. 1985. Combustion theory: the fundamental theory of chemically reacting flow systems. Menlo Park, CA: Benjamin-Cummings Pub. Co.

    Google Scholar 

  • Youngs, D. L. (1982). Time-dependent multi-material flowwith large fluid distortion. In K.W. Morton & M. J. Baines (Hrsg.), Numerical methods for fluid dynamics (S. 273-285). Academic Press, New York.

    Google Scholar 

  • Zhang, H., Zheng, L. L., Prasad, V. & Hou, T. Y. (1998). A curvilinear level set formulation for highly deformable free surface problems with application to solidification. Numer. Heat Transfer, 34, 1–20.

    Article  ADS  Google Scholar 

  • Zwart, P. J., Gerber, G. & Belamri, T. (2004). A two-phase flow model for prediction of cavitation dynamics. In Fifth International Conference on Multiphase Flow. Yokohama, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Spezielle Themen. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_13

Download citation

Publish with us

Policies and ethics