Skip to main content

Steigerung der Effizienz und der Genauigkeit

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Dieses Kapitel ist der Genauigkeits- und Effizienzsteigerung und der Qualität numerischer Gitter für komplexe Geometrien gewidmet. Zuerst wird die Effizienzsteigerung durch Mehrgitteralgorithmen beschrieben, gefolgt von Beispielen. Adaptive Gittermethoden und lokale Gitterverfeinerung sind Gegenstand eines weiteren Abschnitts. Schließlich wird die Parallelisierung diskutiert. Besondere Aufmerksamkeit wird der Parallelverarbeitung für implizite Methoden, die auf der Gebietszerlegung in Raum und Zeit basieren, und der Analyse der Effizienz der Parallelverarbeitung gewidmet. Zur Veranschaulichung dieser Punkte werden Beispielberechnungen verwendet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adams, M., Colell, P., Graves, D. T., Johnson, J. N., Johansen, H. S., Keen, N. D., ... Van Straalen, B. (2015). Chombo software package for AMR application design document (Bericht). Lawrence Berkeley National Laboratory, Berkeley, CA: Applied Numerical Algorithms Group, Computational Research Division.

    Google Scholar 

  • Bastian, P. & Horton, G. (1989). Parallelization of robust multi-grid methods: ILU factorization and frequency decomposition method. In W. Hackbusch & R. Rannacher (Hrsg.), Notes on numerical fluid mechanics (Bd. 30, S. 24–36). Braunschweig: Vieweg.

    Google Scholar 

  • Berger, M. J. & Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53, 484–512.

    Google Scholar 

  • Bijl, H., Lucor, D., Mishra, S. & Schwab, C. (2013). Uncertainty quantification in computational fluid dynamics. Switzerland: Springer International Publishing.

    Google Scholar 

  • Bradshaw, P., Launder, B. E. & J. L. Lumley, J. L. (1994). Collaborative testing of turbulence models. In K. N. Ghia, U. Ghia & D. Goldstein (Hrsg.), Advances in computational fluid mechanics (Bd. 196), New York: ASME.

    Google Scholar 

  • Brandt, A. (1984). Multigrid techniques: 1984 guide with applications to fluid dynamics. GMDStudien Nr. 85, Gesellschaft für Mathematik und Datenverarbeitung (GMD). Bonn, Germany (see also Multigrid Classics version at http://www.wisdom.weizmann.ac.il/~achi/).

  • Briggs, W. L., Henson, V. E. & McCormick, S. F. (2000). A multigrid tutorial (2. Aufl.). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Bryan, G. H. (2007). A comparison of convection resolving-simulations with convection-permitting simulations. NSSL Colloquium, Norman, OK. (http://www2.mmm.ucar.edu/-people/-bryan/Presentations/bryan_2007_nssl_resolution.pdf)

  • Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev., 131, 2394–2416.

    Google Scholar 

  • Burmeister, J. & Horton, G. (1991). Time-parallel solution of the Navier-Stokes equations. In Proc. 3rd European Multigrid Conference. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Caruso, S. C., Ferziger, J. H. & Oliger, J. (1985). An adaptive grid method for incompressible flows (Bericht Nr. TF-23). Stanford CA: Dept. Mech. Engrg., Stanford University.

    Google Scholar 

  • Celik, I., Ghia, U., Roache, P. J. & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. J. Fluids Engrg., 130, 078001.

    Google Scholar 

  • Demmel, J. W., Heath, M. T. & van der Vorst, H. A. (1993). Parallel numerical linear algebra. Acta Numerica, 2, 111–197.

    Google Scholar 

  • Ferziger, J. H. & Perić, M. (1996). Further discussion of numerical errors in CFD. Int. J. Numer. Methods Fluids, 23, 1–12.

    Google Scholar 

  • Hackbusch, W. & Trottenberg, U. (Hrsg.). (1991). Proc. Third European Multigrid Conference, International Series of Numerical Mathematics. Basel: Birkhäuser Verlag.

    Google Scholar 

  • Hackbusch, W. (1984). Parabolic multi-grid methods. In R. Glowinski & J.-R. Lions (Hrsg.), Computing methods in applied sciences and engineering. Amsterdam: North Holland.

    Google Scholar 

  • Hackbusch, W. (2003). Multi-grid methods and applications (2nd Printing). Berlin: Springer.

    Google Scholar 

  • Harrison, R. J. (1991). Portable tools and applications for parallel computers. Int. J. Quantum Chem., 40, 847–863.

    Google Scholar 

  • Hortmann, M., Perić, M. & Scheuerer, G. (1990). Finite volume multigrid prediction of laminar natural convection: bench-mark solutions. Int. J. Numer. Methods Fluids, 11, 189–207.

    Google Scholar 

  • Horton, G. (1991). Ein zeitparalleles Lösungsverfahren für die Navier-Stokes-Gleichungen PhD Dissertation. Universität Erlangen-Nürnberg.

    Google Scholar 

  • Hutchinson, B. R. & Raithby, G. D. (1986). A multigrid method based on the additive correction strategy. Numer. Heat Transfer, 9, 511–537.

    Google Scholar 

  • Hutchinson, B. R., Galpin, P. F. & Raithby, G. D. (1988). Application of additive correction multigrid to the coupled fluid flow equations. Numer. Heat Transfer, 13, 133–147.

    Google Scholar 

  • Khajeh-Saeed, A. & Perot, J. B. (2013). Direct numerical simulation of turbulence using GPU accelerated supercomputers. J. Comput. Phys., 235, 241–257.

    Google Scholar 

  • Lilek, Ž. (1995). Ein Finite-Volumen Verfahren zur Berechnung von inkompressiblen und kompressiblen Strömungen in komplexen Geometrien mit beweglichen Rndern und freien Oberflächen (PhD Dissertation). University of Hamburg, Germany.

    Google Scholar 

  • Lilek, Ž., Muzaferija, S. & Perić, M. (1997a). Efficiency and accuracy aspects of a full-multigrid SIMPLE algorithm for three-dimensional flows. Numer. Heat Transfer, Part B, 31, 23–42.

    Google Scholar 

  • Lilek, Ž., Nadarajah, S., Perić, M., Tindal, M. & Yianneskis, M. (1991). Measurement and simulation of the flow around a poppet valve. In Proc. 8th symp. turbulent shear flows (S. 13.2.1–13.2.6).

    Google Scholar 

  • Lilek, Ž., Schreck, E. & Perić, M. (1995). Parallelization of implicit methods for flow simulation. In S. G. Wagner (Hrsg.), Notes on numerical fluid mechanics (Bd. 50, S. 135–146). Braunschweig: Vieweg.

    Google Scholar 

  • Matheou, G. & Chung, D. (2014). Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 4439–4460.

    Article  ADS  Google Scholar 

  • McCormick, S. F. (Hrsg.). (1987). Multigrid methods. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

    MATH  Google Scholar 

  • Muzaferija, S. & Gosman, A. D. (1997). Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. J. Comput. Physics, 138, 766–787.

    Article  ADS  MathSciNet  Google Scholar 

  • Muzaferija, S. (1994). Adaptive finite volume method for flow predictions using unstructured meshes and multigrid approach (PhD Dissertation). University of London.

    Google Scholar 

  • Perić, M. & Schreck, E. (1995). Analysis of efficiency of implicit CFD methods on MIMD computers. Proc. Parallel CFD ’95 Conference.

    Google Scholar 

  • Perić, M. (1993). Natural convection in trapezoidal cavities. Numer. Heat Transfer Part A (Applications), 24, 213–219.

    Google Scholar 

  • Rakhimov, A. C., Visser, D. C. & Komen, E. M. J. (2018). Uncertainty quantification method for CFD applied to the turbulent mixing of two water layers. Nuclear Engrg. Design, 333, 1–15.

    Google Scholar 

  • Raw, M. J. (1995). A coupled algebraic multigrid method for the 3D Navier-Stokes equations. In W. Hackbusch & G. Wittum (Hrsg.), Fast solvers for flow problems, notes on numerical fluid mechanics (Bd. 49, S. 204–215). Braunschweig: Vieweg.

    Google Scholar 

  • Roache, P. J. (1994). Perspective: a method for uniform reporting of grid refinement studies. ASME J. Fluids Engrg., 116, 405–413.

    Article  Google Scholar 

  • Rodi, W., Bonnin, J.-C. & Buchal, T. (Hrsg.). (1995). Proc. ERCOFTAC workshop on data bases and testing of calculation methods for turbulent flows, April 3–7. Germany: Univ. Karlsruhe.

    Google Scholar 

  • Schalkwijk, J., Griffith, E., Post, F. H. & Jonker, H. J. J. (2012a). High-performance simulations of turbulent clouds on a desktop PC: Exploiting the GPU. Bull. Amer. Met. Soc., 93, 307–314.

    Article  ADS  Google Scholar 

  • Schreck, E. & Perić, M. (1993). Computation of fluid flow with a parallel multigrid solver. Int. J. Numer. Methods Fluids, 16, 303–327.

    Article  ADS  Google Scholar 

  • Seidl, V. (1997). Entwicklung und Anwendung eines parallelen Finite-Volumen-Verfahrens zur Strömungssimulation auf unstrukturierten Gittern mit lokaler Verfeinerung (PhD Dissertation). University of Hamburg, Germany.

    Google Scholar 

  • Seidl, V., Perić, M. & Schmidt, S. (1996). Space- and time-parallel Navier-Stokes solver for 3D block-adaptive Cartesian grids. In A. Ecer, J. Periaux, N. Satofuka & S. Taylor (Hrsg.), Parallel Computational Fluid Dynamics 1995: Implementations and results using parallel computers (S. 577–584). North Holland – Elsevier.

    Google Scholar 

  • Skamarock, W. C., Oliger, J. & Street, R. L. (1989). Adaptive grid refinement for numerical weather prediction. J. Comput. Phys., 80, 27–60.

    Google Scholar 

  • Sullivan, P. P. & Patton, E. G. (2008). A highly parallel algorithm for turbulence simulations in planetary boundary layers: Results with meshes up to \(1024^{3}\). In 18th Conference on boundary layers and turbulence, AMS (S. Paper 11B.5, 11). Stockholm, Sweden.

    Google Scholar 

  • Sullivan, P. P. & Patton, E. G. (2011). The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395–2415.

    Google Scholar 

  • Sunderam, V. S. (1990). PVM: a framework for parallel distributed computing. Concurrency and computaton: Practice and Experience, 2, 315–339.

    Article  Google Scholar 

  • Thompson, M. C. & Ferziger, J. H. (1989). A multigrid adaptive method for incompressible flows. J. Comput. Phys., 82, 94–121.

    Article  ADS  Google Scholar 

  • Vanka, S. P. (1986). Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys, 65, 138–158.

    Article  ADS  MathSciNet  Google Scholar 

  • Weiss, J. M., Maruszewski, J. P. & Smith, W. A. (1999). Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J., 37, 29–36.

    Article  ADS  Google Scholar 

  • Wesseling, P. (1990). Multigrid methods in computational fluid dynamics. ZAMM Z. Angew. Math. Mech., 70, T337–T347.

    Article  MathSciNet  Google Scholar 

  • Williams, J., Sarofeen, C., Shan, H. & Conley, M. (2016). An accelerated iterative linear solver with GPUs and CFD calculations of unstructured grids. Procedia Compu. Sci., 80, 1291–1300.

    Article  Google Scholar 

  • Zhou, B., Simon, J. S. & Chow, F. K. (2014). The convective boundary layer in the Terra Incognita. J. Atmos. Sci., 71, 2547–2563.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Steigerung der Effizienz und der Genauigkeit. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_12

Download citation

Publish with us

Policies and ethics