Skip to main content

Kompressible Strömungen

  • Chapter
  • First Online:
Numerische Strömungsmechanik

Zusammenfassung

Kompressible Strömungen werden in diesem Kapitel betrachtet. Methoden, die für kompressible Strömungen ausgelegt sind, werden kurz besprochen. Die Erweiterung von Druckkorrekturansätzen, die auf der Teilschrittmethode und dem SIMPLE-Algorithmus für inkompressible Ströme basieren, auf kompressible Strömungen wird ausführlicher beschrieben. Methoden zur Behandlung von Stößen (z.B. Gitteradaption, totalvariationsminimierende (total variation diminishing - TVD) und im Wesentlichen nichtoszillierende Schemata) werden ebenfalls diskutiert. Die Randbedingungen für verschiedene Arten von kompressiblen Strömungen (Unter-, Trans- und Überschall) werden beschrieben. Schließlich werden Anwendungsbeispiele vorgestellt und diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Für inkompressible Strömungen kann der statische Druck entweder am Ein- oder am Ausstromrand vorgegeben werden. Da der Massenstrom eine Funktion der Druckdifferenz zwischen Ein- und Ausstromrand ist, kann die Geschwindigkeit am Einstromrand nicht vorgegeben werden, wenn der Druck sowohl am Ein- als auch am Ausstromrand vorgegeben ist.

Literatur

  • Abe, K. , Jang, Y .- J. & Leschziner, M. A. (2003). An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow, 24, 181–198.

    Google Scholar 

  • Abgrall, R. (1994). On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation. J. Comput. Phys., 114, 45–58.

    Google Scholar 

  • Barth, T. J. & Jespersen, D. C. (1989). The design and application of upwind schemes on unstructured meshes. In 27th Aerospace Sci. Mtg. (AIAA Paper 89-0366)

    Google Scholar 

  • Beam, R. M. & Warming, R. F. (1978). An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J., 16, 393–402.

    Google Scholar 

  • Bilger, R. W. (1975). A note on Favre averaging in variable density flows. Combust. Sci. Technol., 11, 215–217.

    Google Scholar 

  • Bodony, D. J. & Lele, S. K. (2008). Current status of jet noise predictions using large-eddy simulation. AIAA J., 46, 364–380.

    Google Scholar 

  • Boris, J. P. & Book, D. L. (1973). Flux-corrected transport. i. SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 11, 38–69.

    Google Scholar 

  • Brehm, C. , Housman, J. A. , Kiris, C. C. , Barad, M. F. & Hutcheson, F. V. (2017). Four-jet impingement: Noise characteristics and simplified acoustic model. Int. J. Heat and Fluid flow, 67, 43–58.

    Google Scholar 

  • Brès, G. A. , Ham, F. E. , Nichols, J. W. & Lele, S. K. (2017). Unstructured large-eddy simulations of supersonic jets AIAA J., 55, 1164–1184.

    Google Scholar 

  • Chow, F. K. & Moin, P. (2003). A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184 366–380.

    Google Scholar 

  • Demirdžić, I. , Lilek, v. & Perić, M. (1993). A colocated finite volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids, 16, 1029–1050.

    Google Scholar 

  • Durran, D. R. (2010). Numerical methods for fluid dynamics with applications to geophysics (2. Aufl.). Berlin: Springer.

    Google Scholar 

  • Friedrich, O. 1998. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys., 144, 194–212.

    Google Scholar 

  • Fu, L. , Hu, X. Y. & Adams, N. A. (2016). A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys., 305, 333–359.

    Google Scholar 

  • Fu, L. , Hu, X. Y. & Adams, N. A. (2017). Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys., 349, 97–121.

    Google Scholar 

  • Garnier, E. , Adams, N. & Sagaut, P. (2009). Large-eddy simulation for compressible flows. Berlin: Springer.

    Google Scholar 

  • Hirsch, C. 2007. Numerical computation of internal and external flows (2nd Aufl., Bd. I). Burlington, MA: Butterworth-Heinemann (Elsevier).

    Google Scholar 

  • Housman, J. A. , Stich, G.-D. & Kiris, C. C. (2017). Jet noise prediction using hybrid RANS/LES with structured overset grids. In 23rd AIAA/CEAS Aeroacoustics Conf., AIAA Paper 2017-3213.

    Google Scholar 

  • Issa, R. I. & Lockwood, F. C. (1977). On the prediction of two-dimensional supersonic viscous interaction near walls. AIAA J., 15, 182–188.

    Google Scholar 

  • Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat mass Transfer, 24, 1541–1544.

    Google Scholar 

  • Karki, K. C. & Patankar, S. V. (1989). Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J., 27, 1167–1174.

    Google Scholar 

  • Kuzmin, D. , Löhner, R. & Turek, S. (Hrsg.). (2012). Flux-corrected transport: Principles, algorithms, and applications (2. Aufl.). Dordrecht: Springer.

    Google Scholar 

  • Le Bras, S. , Deniau, H. , Bogey, C. & Daviller, G. (2017). Development of compressible large-eddy simulations combining high-order schemes and wall modeling. AIAA J., 55, 1152–1163.

    Google Scholar 

  • Lilek, Ž. (1995). Ein Finite-Volumen Verfahren zur Berechnung von inkompressiblen und kompressiblen Strömungen in komplexen Geometrien mit beweglichen Rändern und freien Oberflächen (PhD Dissertation). University of Hamburg, Germany.

    Google Scholar 

  • Liu, X.-D. , Osher, S. & Chan, T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115, 200–212.

    Google Scholar 

  • MacCormack, R.W. (2003). The effect of viscosity in hypervelocity impact cratering. J. Spacecraft and Rockets, 40, 757-763. (Reprinted from AIAA Paper 69-354, 1969)

    Google Scholar 

  • Mason, M. L., Putnam, L. E. & Re, R. J. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzle at static conditions. NASA Techn. Paper No. 1704.

    Google Scholar 

  • Moin, P. , Squires, K. , Cabot, W. & Lee, S. (1991). A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A, 3, 2746–2757.

    Google Scholar 

  • NASA TMR. (o.J.). Turbulence modeling resource Langley Research Center. Zugriff auf https://turbmodels.larc.nasa.gov/index.html

  • Parrott, A. K. & Christie, M. A. (1986). FCT applied to the 2-D finite element solution of tracer transport by single phase flow in a porous medium In K. W. Morton & M. J. Baines (Hrsg.), Proc. ICFD-conf. num. meth. in fluid dyn. (S. 609 ff.). Oxford U. Press.

    Google Scholar 

  • Perić, R. (2019). Minimierung unerwünschter Wellenreflexionen an den Gebietsrändern bei Strömungssimulationen mit Forcing Zones (PhD Dissertation). Technische Universität Hamburg, Germany.

    Google Scholar 

  • Pirozzoli, S. (2011). Numerical methods for high-speed flows. Annu. Rev. Fluid Mech., 43, 163–194.

    Google Scholar 

  • Reichardt, H. (1951). Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Math. Mech., 31, 208–219.

    Google Scholar 

  • Riahi, H., Meldi, M., Favier, J., Serre, E. & Goncalves, E. (2018). A pressure-corrected immersed boundary method for the numerical simulation of compressible flows. J. Comput. Phys., 374, 361–383.

    Google Scholar 

  • Rizzi, A. & Viviand, H. (Hrsg.). (1981). Numerical methods for the computation of inviscid transonic flows with shock waves. Notes on Numerical Fluid mechanics (Bd. 3). Braunschweig: Vieweg.

    Google Scholar 

  • Sonar, T. (1997). On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: Polynomial recovery, accuracy and stencil selection. Comput. Methods Appl. Mech. Engrg., 140, 157.

    Google Scholar 

  • Steger, J. L. & Warming, R. F.(1981). Flux vector splitting of the inviscid gas-dynamic equations with applications to finite difference methods. J. Comput. Phys., 40, 263–293.

    Google Scholar 

  • Tannehill, J. C., Anderson, D. A. & Pletcher, R. H. (1997). Computational fluid mechanics and heat transfer (2. Aufl.). Penn.: Taylor & Francis.

    Google Scholar 

  • Turkel, E. 1987. Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys., 72, 277–298.

    Google Scholar 

  • Van Doormal, J. P. , Raithby, G. D. & McDonald, B. H. (1987). The segregated approach to predicting viscous compressible fluid flows. ASME J. Turbomachinery, 109, 268–277.

    Google Scholar 

  • Wang, R. , Feng, H. & Huang, C. (2016). A new mapped Weighted Essentially Non-oscillatory method using rational mapping function. J. Sci. Computing, 67, 540–580.

    Google Scholar 

  • Weiss, J. M. & Smith, W. A. (1995). Preconditioning applied to variable and constant density flows. AIAA J., 33, 2050–2057.

    Google Scholar 

  • Weiss, J. M. , Maruszewski, J. P. & Smith, W. A. (1999). Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J., 37, 29–36.

    Google Scholar 

  • Zalesak, S. T. (1979). Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milovan Perić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferziger, J.H., Perić, M., Street, R.L. (2020). Kompressible Strömungen. In: Numerische Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46544-8_11

Download citation

Publish with us

Policies and ethics