Skip to main content

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Thyroid eye disease (TED) is a potentially vision-threatening autoimmune condition that is most commonly associated with Graves’ disease. The pathophysiology of TED is incompletely understood. The thyrotropin receptor and insulin-like growth factor-1 receptor are autoantigens that appear to play a central role in the aberrant activation of the orbital fibroblasts, which are the principal effector cells responsible for orbital soft tissue enlargement in TED. The most common clinical findings of TED include eyelid malposition, exophthalmos, and restrictive strabismus. Conservative measures such as ocular surface lubrication are the mainstay of treatment for mild TED. Euthyroidism should be rapidly achieved and maintained in all patients. Smoking is the most important modifiable risk factor for disease onset and progression. The current first line of therapy for active moderate-to-severe and vision-threatening TED is intravenous glucocorticoids. If the disease is refractory to intravenous glucocorticoids, then urgent surgical decompression is indicated. To treat compressive optic neuropathy, surgical decompression needs to relieve compression at the orbital apex. Orbital decompression surgery to reduce exophthalmos can involve orbital fat resection and removal of the lateral wall, medial wall, and, rarely, orbital floor. TED must be stable and nonprogressive for at least 6 months prior to surgical rehabilitation. TED rehabilitative surgery should be performed in the following sequence: orbital decompression, extraocular muscle surgery, and eyelid surgery. The efficacy of novel disease-modifying agents such as rituximab is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dolman PJ. Evaluating Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):229–48.

    PubMed  Google Scholar 

  2. Lazarus JH. Epidemiology of Graves’ orbitopathy (GO) and relationship with thyroid disease. Best Pract Res Clin Endocrinol Metab. 2012;26(3):273–9.

    PubMed  Google Scholar 

  3. Marcocci C, Bartalena L, Bogazzi F, Panicucci M, Pinchera A. Studies on the occurrence of ophthalmopathy in Graves’ disease. Acta Endocrinol (Copenh). 1989;120(4):473–8.

    CAS  Google Scholar 

  4. Verity DH, Rose GE. Acute thyroid eye disease (TED): principles of medical and surgical management. Eye (Lond). 2013;27(3):308–19.

    CAS  Google Scholar 

  5. Tanda ML, Piantanida E, Liparulo L, Veronesi G, Lai A, Sassi L, et al. Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed graves’ hyperthyroidism seen at a single center. J Clin Endocrinol Metab. 2013;98(4):1443–9.

    CAS  PubMed  Google Scholar 

  6. Enzmann DR, Donaldson SS, Kriss JP. Appearance of Graves’ disease on orbital computed tomography. J Comput Assist Tomogr. 1979;3(6):815–9.

    CAS  PubMed  Google Scholar 

  7. Bartley GB. The epidemiologic characteristics and clinical course of ophthalmopathy associated with autoimmune thyroid disease in Olmsted County, Minnesota. Trans Am Ophthalmol Soc. 1994;92:477–588.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Forbes G, Gorman CA, Brennan MD, Gehring DG, Ilstrup DM, Earnest F. Ophthalmopathy of Graves’ disease: computerized volume measurements of the orbital fat and muscle. AJNR Am J Neuroradiol. 1986;7(4):651–6.

    CAS  PubMed  Google Scholar 

  9. Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362(8):726–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Smith TJ, Bahn RS, Gorman CA. Connective tissue, glycosaminoglycans, and diseases of the thyroid. Endocr Rev. 1989;10(3):366–91.

    CAS  PubMed  Google Scholar 

  11. Hufnagel TJ, Hickey WF, Cobbs WH, Jakobiec FA, Iwamoto T, Eagle RC. Immunohistochemical and ultrastructural studies on the exenterated orbital tissues of a patient with Graves’ disease. Ophthalmology. 1984;91(11):1411–9.

    CAS  PubMed  Google Scholar 

  12. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997;151(2):317–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Smith TJ, Koumas L, Gagnon A, Bell A, Sempowski GD, Phipps RP, et al. Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2002;87(1):385–92.

    CAS  PubMed  Google Scholar 

  14. Smith TJ, Tsai CC, Shih MJ, Tsui S, Chen B, Han R, et al. Unique attributes of orbital fibroblasts and global alterations in IGF-1 receptor signaling could explain thyroid-associated ophthalmopathy. Thyroid. 2008;18(9):983–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Korducki JM, Loftus SJ, Bahn RS. Stimulation of glycosaminoglycan production in cultured human retroocular fibroblasts. Invest Ophthalmol Vis Sci. 1992;33(6):2037–42.

    CAS  PubMed  Google Scholar 

  16. Smith TJ, Wang HS, Evans CH. Leukoregulin is a potent inducer of hyaluronan synthesis in cultured human orbital fibroblasts. Am J Physiol. 1995;268(2 Pt 1):C382–8.

    CAS  PubMed  Google Scholar 

  17. Cao HJ, Wang HS, Zhang Y, Lin HY, Phipps RP, Smith TJ. Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression. Insights into potential pathogenic mechanisms of thyroid-associated ophthalmopathy. J Biol Chem. 1998;273(45):29615–25.

    CAS  PubMed  Google Scholar 

  18. Kaback LA, Smith TJ. Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1beta in human orbital fibroblasts: potential insight into the molecular pathogenesis of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 1999;84(11):4079–84.

    CAS  PubMed  Google Scholar 

  19. Han R, Smith TJ. T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology. 2006;147(1):13–9.

    CAS  PubMed  Google Scholar 

  20. Smith TJ, Hoa N. Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J Clin Endocrinol Metab. 2004;89(10):5076–80.

    CAS  PubMed  Google Scholar 

  21. Krieger CC, Gershengorn MC. A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves’ disease orbital cells. Endocrinology. 2014;155(2):627–34.

    PubMed Central  PubMed  Google Scholar 

  22. Tan GH, Dutton CM, Bahn RS. Interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptor inhibit IL-1-induced glycosaminoglycan production in cultured human orbital fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 1996;81(2):449–52.

    CAS  PubMed  Google Scholar 

  23. Sorisky A, Pardasani D, Gagnon A, Smith TJ. Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. J Clin Endocrinol Metab. 1996;81(9):3428–31.

    CAS  PubMed  Google Scholar 

  24. Valyasevi RW, Erickson DZ, Harteneck DA, Dutton CM, Heufelder AE, Jyonouchi SC, et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocrinol Metab. 1999;84(7):2557–62.

    CAS  PubMed  Google Scholar 

  25. Valyasevi RW, Harteneck DA, Dutton CM, Bahn RS. Stimulation of adipogenesis, peroxisome proliferator-activated receptor-gamma (PPARgamma), and thyrotropin receptor by PPARgamma agonist in human orbital preadipocyte fibroblasts. J Clin Endocrinol Metab. 2002;87(5):2352–8.

    CAS  PubMed  Google Scholar 

  26. Koumas L, Smith TJ, Feldon S, Blumberg N, Phipps RP. Thy-1 expression in human fibroblast subsets defines myofibroblastic or lipofibroblastic phenotypes. Am J Pathol. 2003;163(4):1291–300.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Feldon SE, O’Loughlin CW, Ray DM, Landskroner-Eiger S, Seweryniak KE, Phipps RP. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol. 2006;169(4):1183–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Han R, Tsui S, Smith TJ. Up-regulation of prostaglandin E2 synthesis by interleukin-1beta in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. J Biol Chem. 2002;277(19):16355–64.

    CAS  PubMed  Google Scholar 

  29. Wang HS, Cao HJ, Winn VD, Rezanka LJ, Frobert Y, Evans CH, et al. Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. J Biol Chem. 1996;271(37):22718–28.

    CAS  PubMed  Google Scholar 

  30. Cao HJ, Smith TJ. Leukoregulin upregulation of prostaglandin endoperoxide H synthase-2 expression in human orbital fibroblasts. Am J Physiol. 1999;277(6 Pt 1):C1075–85.

    CAS  PubMed  Google Scholar 

  31. Young DA, Evans CH, Smith TJ. Leukoregulin induction of protein expression in human orbital fibroblasts: evidence for anatomical site-restricted cytokine-target cell interactions. Proc Natl Acad Sci U S A. 1998;95(15):8904–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Hwang CJ, Afifiyan N, Sand D, Naik V, Said J, Pollock SJ, et al. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci. 2009;50(5):2262–8.

    PubMed Central  PubMed  Google Scholar 

  33. Sciaky D, Brazer W, Center DM, Cruikshank WW, Smith TJ. Cultured human fibroblasts express constitutive IL-16 mRNA: cytokine induction of active IL-16 protein synthesis through a caspase-3-dependent mechanism. J Immunol. 2000;164(7):3806–14.

    CAS  PubMed  Google Scholar 

  34. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol. 2003;170(12):6348–54.

    CAS  PubMed  Google Scholar 

  35. Cao HJ, Han R, Smith TJ. Robust induction of PGHS-2 by IL-1 in orbital fibroblasts results from low levels of IL-1 receptor antagonist expression. Am J Physiol Cell Physiol. 2003;284(6):C1429–37.

    CAS  PubMed  Google Scholar 

  36. Heufelder AE, Bahn RS. Modulation of Graves’ orbital fibroblast proliferation by cytokines and glucocorticoid receptor agonists. Invest Ophthalmol Vis Sci. 1994;35(1):120–7.

    CAS  PubMed  Google Scholar 

  37. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev. 1996;153:85–106.

    CAS  PubMed  Google Scholar 

  38. Douglas RS, Afifiyan NF, Hwang CJ, Chong K, Haider U, Richards P, et al. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2010;95(1):430–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Smith TJ, Padovani-Claudio DA, Lu Y, Raychaudhuri N, Fernando R, Atkins S, et al. Fibroblasts expressing the thyrotropin receptor overarch thyroid and orbit in Graves’ disease. J Clin Endocrinol Metab. 2011;96(12):3827–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM. Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282(31):22910–20.

    CAS  PubMed  Google Scholar 

  41. Weetman AP. Graves’ disease. N Engl J Med. 2000;343(17):1236–48.

    CAS  PubMed  Google Scholar 

  42. Ponto KA, Kanitz M, Olivo PD, Pitz S, Pfeiffer N, Kahaly GJ. Clinical relevance of thyroid-stimulating immunoglobulins in graves’ ophthalmopathy. Ophthalmology. 2011;118(11):2279–85.

    PubMed  Google Scholar 

  43. Gerding MN, van der Meer JW, Broenink M, Bakker O, Wiersinga WM, Prummel MF. Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 2000;52(3):267–71.

    CAS  Google Scholar 

  44. Eckstein AK, Plicht M, Lax H, Hirche H, Quadbeck B, Mann K, et al. Clinical results of anti-inflammatory therapy in Graves’ ophthalmopathy and association with thyroidal autoantibodies. Clin Endocrinol (Oxf). 2004;61(5):612–8.

    Google Scholar 

  45. Eckstein AK, Plicht M, Lax H, Neuhauser M, Mann K, Lederbogen S, et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab. 2006;91(9):3464–70.

    CAS  PubMed  Google Scholar 

  46. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95(5):2123–31.

    CAS  PubMed  Google Scholar 

  47. Wakelkamp IM, Bakker O, Baldeschi L, Wiersinga WM, Prummel MF. TSH-R expression and cytokine profile in orbital tissue of active vs. inactive Graves’ ophthalmopathy patients. Clin Endocrinol (Oxf). 2003;58(3):280–7.

    CAS  Google Scholar 

  48. Douglas RS, Gianoukakis AG, Kamat S, Smith TJ. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves’ disease may carry functional consequences for disease pathogenesis. J Immunol. 2007;178(5):3281–7.

    CAS  PubMed  Google Scholar 

  49. Douglas RS, Naik V, Hwang CJ, Afifiyan NF, Gianoukakis AG, Sand D, et al. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J Immunol. 2008;181(8):5768–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Moshkelgosha S, So PW, Deasy N, Diaz-Cano S, Banga JP. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of Graves’ orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology. 2013;154(9):3008–15.

    CAS  PubMed  Google Scholar 

  51. Jyonouchi SC, Valyasevi RW, Harteneck DA, Dutton CM, Bahn RS. Interleukin-6 stimulates thyrotropin receptor expression in human orbital preadipocyte fibroblasts from patients with Graves’ ophthalmopathy. Thyroid. 2001;11(10):929–34.

    CAS  PubMed  Google Scholar 

  52. Starkey KJ, Janezic A, Jones G, Jordan N, Baker G, Ludgate M. Adipose thyrotrophin receptor expression is elevated in Graves’ and thyroid eye diseases ex vivo and indicates adipogenesis in progress in vivo. J Mol Endocrinol. 2003;30(3):369–80.

    CAS  PubMed  Google Scholar 

  53. Kumar S, Nadeem S, Stan MN, Coenen M, Bahn RS. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J Mol Endocrinol. 2011;46(3):155–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Tsui S, Naik V, Hoa N, Hwang CJ, Afifiyan NF, Sinha Hikim A, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J Immunol. 2008;181(6):4397–405.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Kohn LD, Alvarez F, Marcocci C, Kohn AD, Corda D, Hoffman WE, et al. Monoclonal antibody studies defining the origin and properties of autoantibodies in Graves’ disease. Ann N Y Acad Sci. 1986;475:157–73.

    CAS  PubMed  Google Scholar 

  56. Kumar S, Iyer S, Bauer H, Coenen M, Bahn RS. A stimulatory thyrotropin receptor antibody enhances hyaluronic acid synthesis in graves’ orbital fibroblasts: inhibition by an IGF-I receptor blocking antibody. J Clin Endocrinol Metab. 2012;97(5):1681–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. McKeag D, Lane C, Lazarus JH, Baldeschi L, Boboridis K, Dickinson AJ, et al. Clinical features of dysthyroid optic neuropathy: a European Group on Graves’ Orbitopathy (EUGOGO) survey. Br J Ophthalmol. 2007;91(4):455–8.

    PubMed Central  PubMed  Google Scholar 

  58. Trobe JD, Glaser JS, Laflamme P. Dysthyroid optic neuropathy. Clinical profile and rationale for management. Arch Ophthalmol. 1978;96(7):1199–209.

    CAS  PubMed  Google Scholar 

  59. Miller NR, Walsh FB, Hoyt WF. Walsh and Hoyt’s clinical neuro-ophthalmology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  60. Day RM, Carroll FD. Optic nerve involvement associated with thyroid dysfunction. Trans Am Ophthalmol Soc. 1961;59:220–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Henderson JW. Optic neuropathy of exophthalmic goiter (Graves’ disease). AMA Arch Ophthalmol. 1958;59(4):471–80.

    CAS  PubMed  Google Scholar 

  62. Hedges Jr TR, Scheie HG. Visual field defects in exophthalmos associated with thyroid disease. AMA Arch Ophthalmol. 1955;54(6):885–92.

    PubMed  Google Scholar 

  63. Igersheimer J. Visual changes in progressive exophthalmos. AMA Arch Ophthalmol. 1955;53(1):94–104.

    CAS  PubMed  Google Scholar 

  64. McKeage K. Treatment options for the management of diabetic painful neuropathy: best current evidence. Curr Opin Neurol. 2007;20(5):553–7.

    CAS  PubMed  Google Scholar 

  65. Muller-Forell W, Kahaly GJ. Neuroimaging of Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):259–71.

    PubMed  Google Scholar 

  66. Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158(3):273–85.

    CAS  PubMed  Google Scholar 

  67. Bartley GB, Fatourechi V, Kadrmas EF, Jacobsen SJ, Ilstrup DM, Garrity JA, et al. Long-term follow-up of Graves ophthalmopathy in an incidence cohort. Ophthalmology. 1996;103(6):958–62.

    CAS  PubMed  Google Scholar 

  68. Perros P, Kendall-Taylor P. Natural history of thyroid eye disease. Thyroid. 1998;8(5):423–5.

    CAS  PubMed  Google Scholar 

  69. Neigel JM, Rootman J, Belkin RI, Nugent RA, Drance SM, Beattie CW, et al. Dysthyroid optic neuropathy. The crowded orbital apex syndrome. Ophthalmology. 1988;95(11):1515–21.

    CAS  PubMed  Google Scholar 

  70. Werner SC. Modification of the classification of the eye changes of Graves’ disease: recommendations of the Ad Hoc Committee of the American Thyroid Association. J Clin Endocrinol Metab. 1977;44(1):203–4.

    CAS  PubMed  Google Scholar 

  71. Rundle FF, Wilson CW. Development and course of exophthalmos and ophthalmoplegia in Graves’ disease with special reference to the effect of thyroidectomy. Clin Sci. 1945;5(3–4):177–94.

    CAS  PubMed  Google Scholar 

  72. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 1997;47(1):9–14.

    CAS  Google Scholar 

  73. Dolman PJ, Rootman J. VISA Classification for Graves orbitopathy. Ophthal Plast Reconstr Surg. 2006;22(5):319–24.

    PubMed  Google Scholar 

  74. Wiersinga WM. Management of Graves’ ophthalmopathy. Nat Clin Pract Endocrinol Metab. 2007;3(5):396–404.

    CAS  PubMed  Google Scholar 

  75. Bartalena L. Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):371–9.

    PubMed  Google Scholar 

  76. Prummel MF, Wiersinga WM. Smoking and risk of Graves’ disease. JAMA. 1993;269(4):479–82.

    CAS  PubMed  Google Scholar 

  77. Bartalena L, Marcocci C, Tanda ML, Manetti L, Dell’Unto E, Bartolomei MP, et al. Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med. 1998;129(8):632–5.

    CAS  PubMed  Google Scholar 

  78. Eckstein A, Quadbeck B, Mueller G, Rettenmeier AW, Hoermann R, Mann K, et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol. 2003;87(6):773–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Kalmann R, Mourits MP. Diabetes mellitus: a risk factor in patients with Graves’ orbitopathy. Br J Ophthalmol. 1999;83(4):463–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Prummel MF, Wiersinga WM, Mourits MP, Koornneef L, Berghout A, van der Gaag R. Effect of abnormal thyroid function on the severity of Graves’ ophthalmopathy. Arch Intern Med. 1990;150(5):1098–101.

    CAS  PubMed  Google Scholar 

  81. Tallstedt L, Lundell G, Torring O, Wallin G, Ljunggren JG, Blomgren H, et al. Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. The Thyroid Study Group. N Engl J Med. 1992;326(26):1733–8.

    CAS  PubMed  Google Scholar 

  82. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, et al. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med. 1998;338(2):73–8.

    CAS  PubMed  Google Scholar 

  83. Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, et al. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94(10):3700–7.

    CAS  PubMed  Google Scholar 

  84. Wiersinga WM. Autoimmunity in Graves’ ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J Clin Endocrinol Metab. 2011;96(8):2386–94.

    CAS  PubMed  Google Scholar 

  85. Bartalena L. The dilemma of how to manage Graves’ hyperthyroidism in patients with associated orbitopathy. J Clin Endocrinol Metab. 2011;96(3):592–9.

    CAS  PubMed  Google Scholar 

  86. Menconi F, Profilo MA, Leo M, Sisti E, Altea MA, Rocchi R, et al. Spontaneous improvement of untreated mild graves’ ophthalmopathy: Rundle’s curve revisited. Thyroid. 2014;24(1):60–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Wiersinga WM. Quality of life in Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):359–70.

    PubMed  Google Scholar 

  88. Marcocci C, Marino M. Treatment of mild, moderate-to-severe and very severe Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):325–37.

    PubMed  Google Scholar 

  89. Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364(20):1920–31.

    CAS  PubMed  Google Scholar 

  90. Bartalena L, Pinchera A, Marcocci C. Management of Graves’ ophthalmopathy: reality and perspectives. Endocr Rev. 2000;21(2):168–99.

    CAS  PubMed  Google Scholar 

  91. Zang S, Ponto KA, Kahaly GJ. Clinical review: intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab. 2011;96(2):320–32.

    CAS  PubMed  Google Scholar 

  92. Smith TJ. Dexamethasone regulation of glycosaminoglycan synthesis in cultured human skin fibroblasts. Similar effects of glucocorticoid and thyroid hormones. J Clin Invest. 1984;74(6):2157–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Marcocci C, Bartalena L, Tanda ML, Manetti L, Dell’Unto E, Rocchi R, et al. Comparison of the effectiveness and tolerability of intravenous or oral glucocorticoids associated with orbital radiotherapy in the management of severe Graves’ ophthalmopathy: results of a prospective, single-blind, randomized study. J Clin Endocrinol Metab. 2001;86(8):3562–7.

    CAS  PubMed  Google Scholar 

  94. Kahaly GJ, Pitz S, Hommel G, Dittmar M. Randomized, single blind trial of intravenous versus oral steroid monotherapy in Graves’ orbitopathy. J Clin Endocrinol Metab. 2005;90(9):5234–40.

    CAS  PubMed  Google Scholar 

  95. Curro N, Covelli D, Vannucchi G, Campi I, Pirola G, Simonetta S, et al. Therapeutic Outcomes of High-Dose Intravenous Steroids in the Treatment of Dysthyroid Optic Neuropathy. Thyroid. 2014;24:897–905.

    CAS  PubMed  Google Scholar 

  96. Wakelkamp IM, Baldeschi L, Saeed P, Mourits MP, Prummel MF, Wiersinga WM. Surgical or medical decompression as a first-line treatment of optic neuropathy in Graves’ ophthalmopathy? A randomized controlled trial. Clin Endocrinol (Oxf). 2005;63(3):323–8.

    CAS  Google Scholar 

  97. Bartalena L, Marcocci C, Chiovato L, Laddaga M, Lepri G, Andreani D, et al. Orbital cobalt irradiation combined with systemic corticosteroids for Graves’ ophthalmopathy: comparison with systemic corticosteroids alone. J Clin Endocrinol Metab. 1983;56(6):1139–44.

    CAS  PubMed  Google Scholar 

  98. Marcocci C, Bartalena L, Bogazzi F, Bruno-Bossio G, Lepri A, Pinchera A. Orbital radiotherapy combined with high dose systemic glucocorticoids for Graves’ ophthalmopathy is more effective than radiotherapy alone: results of a prospective randomized study. J Endocrinol Invest. 1991;14(10):853–60.

    CAS  PubMed  Google Scholar 

  99. Weissel M, Hauff W. Fatal liver failure after high-dose glucocorticoid pulse therapy in a patient with severe thyroid eye disease. Thyroid. 2000;10(6):521.

    CAS  PubMed  Google Scholar 

  100. Marino M, Morabito E, Brunetto MR, Bartalena L, Pinchera A, Marocci C. Acute and severe liver damage associated with intravenous glucocorticoid pulse therapy in patients with Graves’ ophthalmopathy. Thyroid. 2004;14(5):403–6.

    PubMed  Google Scholar 

  101. Lendorf ME, Rasmussen AK, Fledelius HC, Feldt-Rasmussen U. Cardiovascular and cerebrovascular events in temporal relationship to intravenous glucocorticoid pulse therapy in patients with severe endocrine ophthalmopathy. Thyroid. 2009;19(12):1431–2.

    PubMed  Google Scholar 

  102. Gursoy A, Cesur M, Erdogan MF, Corapcioglu D, Kamel N. New-onset acute heart failure after intravenous glucocorticoid pulse therapy in a patient with Graves’ ophthalmopathy. Endocrine. 2006;29(3):513–6.

    CAS  PubMed  Google Scholar 

  103. Salvi M, Vannucchi G, Sbrozzi F, Del Castello AB, Carnevali A, Fargion S, et al. Onset of autoimmune hepatitis during intravenous steroid therapy for thyroid-associated ophthalmopathy in a patient with Hashimoto’s thyroiditis: case report. Thyroid. 2004;14(8):631–4.

    PubMed  Google Scholar 

  104. Tigas S, Papachilleos P, Ligkros N, Andrikoula M, Tsatsoulis A. Hypokalemic paralysis following administration of intravenous methylprednisolone in a patient with Graves’ thyrotoxicosis and ophthalmopathy. Hormones (Athens). 2011;10(4):313–6.

    Google Scholar 

  105. Wichary H, Gasinska T. Methylprednisolone and hepatotoxicity in Graves’ ophthalmopathy. Thyroid. 2012;22(1):64–9.

    CAS  PubMed  Google Scholar 

  106. Bartalena L, Marcocci C, Tanda ML, Rocchi R, Mazzi B, Barbesino G, et al. Orbital radiotherapy for Graves’ ophthalmopathy. Thyroid. 2002;12(3):245–50.

    PubMed  Google Scholar 

  107. Dolman PJ, Rath S. Orbital radiotherapy for thyroid eye disease. Curr Opin Ophthalmol. 2012;23(5):427–32.

    PubMed  Google Scholar 

  108. Tanda ML, Bartalena L. Efficacy and safety of orbital radiotherapy for graves’ orbitopathy. J Clin Endocrinol Metab. 2012;97(11):3857–65.

    CAS  PubMed  Google Scholar 

  109. Ohtsuka K, Sato A, Kawaguchi S, Hashimoto M, Suzuki Y. Effect of steroid pulse therapy with and without orbital radiotherapy on Graves’ ophthalmopathy. Am J Ophthalmol. 2003;135(3):285–90.

    PubMed  Google Scholar 

  110. Prummel MF, Mourits MP, Blank L, Berghout A, Koornneef L, Wiersinga WM. Randomized double-blind trial of prednisone versus radiotherapy in Graves’ ophthalmopathy. Lancet. 1993;342(8877):949–54.

    CAS  PubMed  Google Scholar 

  111. Marcocci C, Bartalena L, Rocchi R, Marino M, Menconi F, Morabito E, et al. Long-term safety of orbital radiotherapy for Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2003;88(8):3561–6.

    CAS  PubMed  Google Scholar 

  112. Wakelkamp IM, Tan H, Saeed P, Schlingemann RO, Verbraak FD, Blank LE, et al. Orbital irradiation for Graves’ ophthalmopathy: is it safe? A long-term follow-up study. Ophthalmology. 2004;111(8):1557–62.

    PubMed  Google Scholar 

  113. Trokel S, Kazim M, Moore S. Orbital fat removal. Decompression for Graves orbitopathy. Ophthalmology. 1993;100(5):674–82.

    CAS  PubMed  Google Scholar 

  114. Kahaly GJ, Rosler HP, Pitz S, Hommel G. Low- versus high-dose radiotherapy for Graves’ ophthalmopathy: a randomized, single blind trial. J Clin Endocrinol Metab. 2000;85(1):102–8.

    CAS  PubMed  Google Scholar 

  115. Gerling J, Kommerell G, Henne K, Laubenberger J, Schulte-Monting J, Fells P. Retrobulbar irradiation for thyroid-associated orbitopathy: double-blind comparison between 2.4 and 16 Gy. Int J Radiat Oncol Biol Phys. 2003;55(1):182–9.

    PubMed  Google Scholar 

  116. Snijders-Keilholz A, De Keizer RJ, Goslings BM, Van Dam EW, Jansen JT, Broerse JJ. Probable risk of tumour induction after retro-orbital irradiation for Graves’ ophthalmopathy. Radiother Oncol. 1996;38(1):69–71.

    CAS  PubMed  Google Scholar 

  117. Paridaens D, van den Bosch WA, van der Loos TL, Krenning EP, van Hagen PM. The effect of etanercept on Graves’ ophthalmopathy: a pilot study. Eye (Lond). 2005;19(12):1286–9.

    CAS  Google Scholar 

  118. Prummel MF, Mourits MP, Berghout A, Krenning EP, van der Gaag R, Koornneef L, et al. Prednisone and cyclosporine in the treatment of severe Graves’ ophthalmopathy. N Engl J Med. 1989;321(20):1353–9.

    CAS  PubMed  Google Scholar 

  119. Rajendram R, Lee RW, Potts MJ, Rose GE, Jain R, Olver JM, et al. Protocol for the combined immunosuppression & radiotherapy in thyroid eye disease (CIRTED) trial: a multi-centre, double-masked, factorial randomised controlled trial. Trials. 2008;9:6.

    PubMed Central  PubMed  Google Scholar 

  120. Bartalena L, Lai A, Compri E, Marcocci C, Tanda ML. Novel immunomodulating agents for Graves orbitopathy. Ophthal Plast Reconstr Surg. 2008;24(4):251–6.

    PubMed  Google Scholar 

  121. Chang S, Perry JD, Kosmorsky GS, Braun WE. Rapamycin for treatment of refractory dysthyroid compressive optic neuropathy. Ophthal Plast Reconstr Surg. 2007;23(3):225–6.

    PubMed  Google Scholar 

  122. Kahaly G, Schrezenmeir J, Krause U, Schweikert B, Meuer S, Muller W, et al. Ciclosporin and prednisone v. prednisone in treatment of Graves’ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest. 1986;16(5):415–22.

    CAS  PubMed  Google Scholar 

  123. Salvi M, Vannucchi G, Beck-Peccoz P. Potential utility of rituximab for Graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98(11):4291–9.

    CAS  PubMed  Google Scholar 

  124. Salvi M, Vannucchi G, Campi I, Curro N, Dazzi D, Simonetta S, et al. Treatment of Graves’ disease and associated ophthalmopathy with the anti-CD20 monoclonal antibody rituximab: an open study. Eur J Endocrinol. 2007;156(1):33–40.

    CAS  PubMed  Google Scholar 

  125. Salvi M, Vannucchi G, Curro N, Introna M, Rossi S, Bonara P, et al. Small dose of rituximab for graves orbitopathy: new insights into the mechanism of action. Arch Ophthalmol. 2012;130(1):122–4.

    CAS  PubMed  Google Scholar 

  126. Salvi M, Vannucchi G, Campi I, Curro N, Simonetta S, Covelli D, et al. Rituximab treatment in a patient with severe thyroid-associated ophthalmopathy: effects on orbital lymphocytic infiltrates. Clin Immunol. 2009;131(2):360–5.

    CAS  PubMed  Google Scholar 

  127. Salvi M, Vannucchi G, Campi I, Rossi S, Bonara P, Sbrozzi F, et al. Efficacy of rituximab treatment for thyroid-associated ophthalmopathy as a result of intraorbital B-cell depletion in one patient unresponsive to steroid immunosuppression. Eur J Endocrinol. 2006;154(4):511–7.

    CAS  PubMed  Google Scholar 

  128. El Fassi D, Nielsen CH, Hasselbalch HC, Hegedus L. Treatment-resistant severe, active Graves’ ophthalmopathy successfully treated with B lymphocyte depletion. Thyroid. 2006;16(7):709–10.

    PubMed  Google Scholar 

  129. Khanna D, Chong KK, Afifiyan NF, Hwang CJ, Lee DK, Garneau HC, et al. Rituximab treatment of patients with severe, corticosteroid-resistant thyroid-associated ophthalmopathy. Ophthalmology. 2010;117(1):133–9 e2.

    PubMed Central  PubMed  Google Scholar 

  130. Krassas GE, Stafilidou A, Boboridis KG. Failure of rituximab treatment in a case of severe thyroid ophthalmopathy unresponsive to steroids. Clin Endocrinol (Oxf). 2010;72(6):853–5.

    CAS  Google Scholar 

  131. Silkiss RZ, Reier A, Coleman M, Lauer SA. Rituximab for thyroid eye disease. Ophthal Plast Reconstr Surg. 2010;26(5):310–4.

    PubMed  Google Scholar 

  132. Madaschi S, Rossini A, Formenti I, Lampasona V, Marzoli SB, Cammarata G, et al. Treatment of thyroid-associated orbitopathy with rituximab–a novel therapy for an old disease: case report and literature review. Endocr Pract. 2010;16(4):677–85.

    PubMed  Google Scholar 

  133. Eckstein A, Schittkowski M, Esser J. Surgical treatment of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):339–58.

    PubMed  Google Scholar 

  134. Otto AJ, Koornneef L, Mourits MP, Deen-van Leeuwen L. Retrobulbar pressures measured during surgical decompression of the orbit. Br J Ophthalmol. 1996;80(12):1042–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Goldberg RA. The evolving paradigm of orbital decompression surgery. Arch Ophthalmol. 1998;116(1):95–6.

    CAS  PubMed  Google Scholar 

  136. Liao SL, Chang TC, Lin LL. Transcaruncular orbital decompression: an alternate procedure for Graves ophthalmopathy with compressive optic neuropathy. Am J Ophthalmol. 2006;141(5):810–8.

    PubMed  Google Scholar 

  137. McCann JD, Goldberg RA, Anderson RL, Burroughs JR, Ben Simon GJ. Medial wall decompression for optic neuropathy but lateral wall decompression with fat removal for non vision-threatening indications. Am J Ophthalmol. 2006;141(5):916–7.

    PubMed  Google Scholar 

  138. Metson R, Pletcher SD. Endoscopic orbital and optic nerve decompression. Otolaryngol Clin North Am. 2006;39(3):551–61, ix.

    PubMed  Google Scholar 

  139. Siracuse-Lee DE, Kazim M. Orbital decompression: current concepts. Curr Opin Ophthalmol. 2002;13(5):310–6.

    PubMed  Google Scholar 

  140. Graham SM, Brown CL, Carter KD, Song A, Nerad JA. Medial and lateral orbital wall surgery for balanced decompression in thyroid eye disease. Laryngoscope. 2003;113(7):1206–9.

    PubMed  Google Scholar 

  141. Olivari N. Transpalpebral decompression of endocrine ophthalmopathy (Graves’ disease) by removal of intraorbital fat: experience with 147 operations over 5 years. Plast Reconstr Surg. 1991;87(4):627–41; discussion 42–3.

    CAS  PubMed  Google Scholar 

  142. Boboridis KG, Bunce C. Surgical orbital decompression for thyroid eye disease. Cochrane Database Syst Rev. 2011;12, CD007630.

    PubMed  Google Scholar 

  143. O’Malley MR, Meyer DR. Transconjunctival fat removal combined with conservative medial wall/floor orbital decompression for Graves orbitopathy. Ophthal Plast Reconstr Surg. 2009;25(3):206–10.

    PubMed  Google Scholar 

  144. Unal M, Leri F, Konuk O, Hasanreisoglu B. Balanced orbital decompression combined with fat removal in Graves ophthalmopathy: do we really need to remove the third wall? Ophthal Plast Reconstr Surg. 2003;19(2):112–8.

    PubMed  Google Scholar 

  145. Kazim M, Trokel SL, Acaroglu G, Elliott A. Reversal of dysthyroid optic neuropathy following orbital fat decompression. Br J Ophthalmol. 2000;84(6):600–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Goldberg RA, Perry JD, Hortaleza V, Tong JT. Strabismus after balanced medial plus lateral wall versus lateral wall only orbital decompression for dysthyroid orbitopathy. Ophthal Plast Reconstr Surg. 2000;16(4):271–7.

    CAS  PubMed  Google Scholar 

  147. Garrity JA, Fatourechi V, Bergstralh EJ, Bartley GB, Beatty CW, DeSanto LW, et al. Results of transantral orbital decompression in 428 patients with severe Graves’ ophthalmopathy. Am J Ophthalmol. 1993;116(5):533–47.

    CAS  PubMed  Google Scholar 

  148. Ben Simon GJ, Wang L, McCann JD, Goldberg RA. Primary-gaze diplopia in patients with thyroid-related orbitopathy undergoing deep lateral orbital decompression with intraconal fat debulking: a retrospective analysis of treatment outcome. Thyroid. 2004;14(5):379–83.

    PubMed  Google Scholar 

  149. Dollinger J. Die Druckentlastung der Augenhöhle durch Entfernung der äusseren Orbitawand bei hochgradigenvExophthalmos und konsekutiver Hornhauterkrankungen. Dtsch Med Wochenschr. 1911;37:1988–90.

    Google Scholar 

  150. Kroll AJ, Casten VG. Dysthyroid exophthalmos. Palliation by lateral orbital decompression. Arch Ophthalmol. 1966;76(2):205–10.

    CAS  PubMed  Google Scholar 

  151. Goldberg RA, Weinberg DA, Shorr N, Wirta D. Maximal, three-wall, orbital decompression through a coronal approach. Ophthalmic Surg Lasers. 1997;28(10):832–43.

    CAS  PubMed  Google Scholar 

  152. McCord Jr CD. Current trends in orbital decompression. Ophthalmology. 1985;92(1):21–33.

    PubMed  Google Scholar 

  153. Shorr N, Baylis HI, Goldberg RA, Perry JD. Transcaruncular approach to the medial orbit and orbital apex. Ophthalmology. 2000;107(8):1459–63.

    CAS  PubMed  Google Scholar 

  154. Chang EL, Bernardino CR, Rubin PA. Transcaruncular orbital decompression for management of compressive optic neuropathy in thyroid-related orbitopathy. Plast Reconstr Surg. 2003;112(3):739–47.

    PubMed  Google Scholar 

  155. Baldeschi L. Correction of lid retraction and exophthalmos. Dev Ophthalmol. 2008;41:103–26.

    PubMed  Google Scholar 

  156. Cansiz H, Yilmaz S, Karaman E, Ogreden S, Acioglu E, Sekercioglu N, et al. Three-wall orbital decompression superiority to 2-wall orbital decompression in thyroid-associated ophthalmopathy. J Oral Maxillofac Surg. 2006;64(5):763–9.

    PubMed  Google Scholar 

  157. Douglas RS, Goldberg RA, Smith TJ. A symposium on thyroid-associated ophthalmopathy, also known as Graves’ orbitopathy at the Jules Stein Eye Institute at the University of California, Los Angeles. Thyroid. 2008;18(9):931.

    PubMed  Google Scholar 

  158. Paridaens DA, Verhoeff K, Bouwens D, van Den Bosch WA. Transconjunctival orbital decompression in Graves’ ophthalmopathy: lateral wall approach ab interno. Br J Ophthalmol. 2000;84(7):775–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Boulos PR, Hardy I. Thyroid-associated orbitopathy: a clinicopathologic and therapeutic review. Curr Opin Ophthalmol. 2004;15(5):389–400.

    PubMed  Google Scholar 

  160. Trokel SL, Cooper WC. Symposium: extraocular muscle problems associated with graves’ disease. Orbital decompression: effect on motility and globe position. Ophthalmology. 1979;86(12):2064–70.

    CAS  PubMed  Google Scholar 

  161. Abramoff MD, Kalmann R, de Graaf ME, Stilma JS, Mourits MP. Rectus extraocular muscle paths and decompression surgery for Graves orbitopathy: mechanism of motility disturbances. Invest Ophthalmol Vis Sci. 2002;43(2):300–7.

    PubMed  Google Scholar 

  162. Inoue Y, Tsuboi T, Kouzaki A, Maeda T, Inoue T. Ophthalmic surgery in dysthyroid ophthalmopathy. Thyroid. 2002;12(3):257–63.

    PubMed  Google Scholar 

  163. Seiff SR, Tovilla JL, Carter SR, Choo PH. Modified orbital decompression for dysthyroid orbitopathy. Ophthal Plast Reconstr Surg. 2000;16(1):62–6.

    CAS  PubMed  Google Scholar 

  164. Millar MJ, Maloof AJ. The application of stereotactic navigation surgery to orbital decompression for thyroid-associated orbitopathy. Eye (Lond). 2009;23(7):1565–71.

    CAS  Google Scholar 

  165. Kikkawa DO, Cruz Jr RC, Christian WK, Rikkers S, Weinreb RN, Levi L, et al. Botulinum A toxin injection for restrictive myopathy of thyroid-related orbitopathy: effects on intraocular pressure. Am J Ophthalmol. 2003;135(4):427–31.

    CAS  PubMed  Google Scholar 

  166. Uddin JM, Davies PD. Treatment of upper eyelid retraction associated with thyroid eye disease with subconjunctival botulinum toxin injection. Ophthalmology. 2002;109(6):1183–7.

    PubMed  Google Scholar 

  167. Wabbels B, Forl M. Botulinum toxin treatment for crocodile tears, spastic entropion and for dysthyroid upper eyelid retraction. Ophthalmologe. 2007;104(9):771–6.

    CAS  PubMed  Google Scholar 

  168. Shih MJ, Liao SL, Kuo KT, Smith TJ, Chuang LM. Molecular pathology of Muller’s muscle in Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2006;91(3):1159–67.

    CAS  PubMed  Google Scholar 

  169. Chang HS, Lee D, Taban M, Douglas RS, Goldberg RA. “En-glove” lysis of lower eyelid retractors with AlloDerm and dermis-fat grafts in lower eyelid retraction surgery. Ophthal Plast Reconstr Surg. 2011;27(2):137–41.

    PubMed  Google Scholar 

  170. Cohen MS, Shorr N. Eyelid reconstruction with hard palate mucosa grafts. Ophthal Plast Reconstr Surg. 1992;8(3):183–95.

    CAS  PubMed  Google Scholar 

  171. Doxanas MT, Dryden RM. The use of sclera in the treatment of dysthyroid eyelid retraction. Ophthalmology. 1981;88(9):887–94.

    CAS  PubMed  Google Scholar 

  172. Feldman KA, Putterman AM, Farber MD. Surgical treatment of thyroid-related lower eyelid retraction: a modified approach. Ophthal Plast Reconstr Surg. 1992;8(4):278–86.

    CAS  PubMed  Google Scholar 

  173. McCord C, Nahai FR, Codner MA, Nahai F, Hester TR. Use of porcine acellular dermal matrix (Enduragen) grafts in eyelids: a review of 69 patients and 129 eyelids. Plast Reconstr Surg. 2008;122(4):1206–13.

    CAS  PubMed  Google Scholar 

  174. Mourits MP, Koornneef L. Lid lengthening by sclera interposition for eyelid retraction in Graves’ ophthalmopathy. Br J Ophthalmol. 1991;75(6):344–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Oestreicher JH, Pang NK, Liao W. Treatment of lower eyelid retraction by retractor release and posterior lamellar grafting: an analysis of 659 eyelids in 400 patients. Ophthal Plast Reconstr Surg. 2008;24(3):207–12.

    PubMed  Google Scholar 

  176. Olver JM, Rose GE, Khaw PT, Collin JR. Correction of lower eyelid retraction in thyroid eye disease: a randomised controlled trial of retractor tenotomy with adjuvant antimetabolite versus scleral graft. Br J Ophthalmol. 1998;82(2):174–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Tan J, Olver J, Wright M, Maini R, Neoh C, Dickinson AJ. The use of porous polyethylene (Medpor) lower eyelid spacers in lid heightening and stabilisation. Br J Ophthalmol. 2004;88(9):1197–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Waller RR. Lower eyelid retraction: management. Ophthalmic Surg. 1978;9(3):41–7.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Shannon S. Joseph and Raymond S. Douglas declare that they have no conflict of interest.

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond S. Douglas MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joseph, S.S., Douglas, R.S. (2015). Thyroid Eye Disease: A Comprehensive Review. In: Demirci, H. (eds) Orbital Inflammatory Diseases and Their Differential Diagnosis. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46528-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46528-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46527-1

  • Online ISBN: 978-3-662-46528-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics