Skip to main content

Fiber-Shaped Lithium Ion Battery

  • Chapter
  • First Online:
Fiber-Shaped Energy Harvesting and Storage Devices

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Commercialized from 1990, lithium ion battery has become a ubiquitous powering supply for a large variety of electronics. Recently, it is facing a challenge and also a chance with the fast developing wearable electronics, e.g., Google Glass, Apple Watch, and Samsung Gear. To embark the “highway” of wearable devices, lithium ion battery should be endowed with some new abilities to be compatible with wearability. Flexibility is therefore highlighted. Furthermore, fiber format tends to achieve a high extent of flexibility and can be woven into textiles by the mature textile technology whose history is as long as that of the human being. Hence, fiber-shaped lithium ion battery has aroused a wide interest. The principle is the same of the planar batteries, which are composed of anode, cathode, and electrolyte/separator. The difference and the pivotal part is to establish a fiber-shaped skeleton, on which the battery components are stacked. This chapter summarizes the recent progress of fiber-shaped lithium ion batteries and their potential wearable applications. In the beginning, the working mechanism, structure, and electrode materials are introduced. Afterwards, several prototypes of flexible lithium ion batteries including bendable, stretchable, and cable-like lithium ion batteries are presented. Then we shift to discuss typical fiber-shaped lithium ion batteries spanning from materials synthesis, structure, and electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Lebdeh Y (2013) Introduction. In: Davidson I, Abu-Lebdeh Y (eds) Nanotechnology for lithium-ion batteries. Springer, New York, pp 2–11

    Chapter  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  3. Imanishi N, Ohashi S, Ichikawa T, Takeda Y, Yamamoto O, Kanno R (1992) Carbon lithium anodes for lithium secondary batteries. J Power Sources 39(2):185–191

    Article  Google Scholar 

  4. Yoshio M, Noguchi H (2009) A review of positive electrode materials for lithium-ion batteries. In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-Ion batteries: science and technologies. Springer, New York, p 11

    Chapter  Google Scholar 

  5. Ferg E, Gummow R, De Kock A, Thackeray M (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141(11):L147–L150

    Article  Google Scholar 

  6. Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462

    Article  Google Scholar 

  7. Babu G, Kalaiselvi N, Bhuvaneswari D (2014) Synthesis and surface modification of LiCo1/3Ni1/3Mn1/3O2 for lithium battery applications. J Electron Mater 43(4):1062–1070

    Article  Google Scholar 

  8. Singh G, Thomas R, Kumar A, Katiyar R (2012) Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0. 5Ni0. 5O2 cathode materials. J Electrochem Soc 159(4):A410–A420

    Article  Google Scholar 

  9. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Article  Google Scholar 

  10. Li ZH, Wang LQ, Li KY, Xue DF (2013) LiMn2O4 rods as cathode materials with high rate capability and good cycling performance in aqueous electrolyte. J Alloys Compd 580:592–597

    Article  Google Scholar 

  11. Pan F, W-l W, Li H, Xin X, Chang Q, Yan W, Chen D (2011) Investigation on a core–shell nano-structural LiFePO4/C and its interfacial C-O interaction. Electrochim Acta 56(20):6940–6944

    Article  Google Scholar 

  12. Jin Y, Yang CP, Rui XH, Cheng T, Chen CH (2011) V2O3 modified LiFePO4/C composite with improved electrochemical performance. J Power Sources 196(13):5623–5630

    Article  Google Scholar 

  13. Zhao Y, Peng LL, Liu BR, Yu GH (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853

    Article  Google Scholar 

  14. Dey A (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549

    Article  Google Scholar 

  15. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243

    Article  Google Scholar 

  16. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4(1):56

    Article  Google Scholar 

  17. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  Google Scholar 

  18. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  Google Scholar 

  19. Hu LB, Wu H, La Mantia F, Yang YA, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4(10):5843–5848

    Article  Google Scholar 

  20. Li N, Chen ZP, Ren WC, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci U S A 109(43):17360–17365

    Article  Google Scholar 

  21. Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011

    Article  Google Scholar 

  22. Koo M, Park KI, Lee SH, Suh M, Jeon DY, Choi JW, Kang K, Lee KJ (2012) Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett 12(9):4810–4816

    Article  Google Scholar 

  23. Xu S, Zhang YH, Cho J, Lee J, Huang X, Jia L, Fan JA, Su YW, Su J, Zhang HG, Cheng HY, Lu BW, Yu CJ, Chuang C, Kim TI, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang YG, Paik U, Rogers JA (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543

    Article  Google Scholar 

  24. Song ZM, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan CK, Yu HY, Jiang HQ (2014) Origami lithium-ion batteries. Nat Commun 5:3140

    Google Scholar 

  25. Kwon YH, Woo SW, Jung HR, Yu HK, Kim K, Oh BH, Ahn S, Lee SY, Song SW, Cho J, Shin HC, Kim JY (2012) Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater 24(38):5192–5197

    Article  Google Scholar 

  26. Ren J, Li L, Chen C, Chen XL, Cai ZB, Qiu LB, Wang YG, Zhu XR, Peng HS (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159

    Article  Google Scholar 

  27. Lin HJ, Weng W, Ren J, Qiu LB, Zhang ZT, Chen PN, Chen XL, Deng J, Wang YG, Peng HS (2014) Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-Ion battery. Adv Mater 26(8):1217–1222

    Article  Google Scholar 

  28. Weng W, Sun Q, Zhang Y, Lin HJ, Ren J, Lu X, Wang M, Peng HS (2014) Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett 14(6):3432–3438

    Article  Google Scholar 

  29. Ren J, Zhang Y, Bai WY, Chen XL, Zhang ZT, Fang X, Weng W, Wang YG, Peng HS (2014) Elastic and wearable wire-shaped lithium-Ion battery with high electrochemical performance. Angew Chem Int Ed 53(30):7864–7869

    Article  Google Scholar 

  30. Zhang Y, Bai WY, Ren J, Weng W, Lin HJ, Zhang ZT, Peng HS (2014) Super-stretchy lithium-ion battery based on carbon nanotube fiber. J Mater Chem A 2(29):11054–11059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, H. (2015). Fiber-Shaped Lithium Ion Battery. In: Fiber-Shaped Energy Harvesting and Storage Devices. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45744-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45744-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45743-6

  • Online ISBN: 978-3-662-45744-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics