Skip to main content

Role of Mycorrhizal Fungi in the Alleviation of Heavy Metal Toxicity in Plants

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Metal-rich soils, especially heavy metal-polluted soils and ultramafic soils, are generally toxic to non-adapted plants and microorganisms. The role of mycorrhizal fungi in the metal tolerance of adapted plant species has become clear in the last decade. This review aims to synthesize the findings of representative studies of the effects of mycorrhizas on the alleviation of heavy metal toxicity on plants and on the absorption/accumulation of heavy metals in their roots and shoots. The adaptation to heavy metals by mycorrhizal symbionts is associated with their efficiency in metal-rich soils. More than 80 % of the studies have indicated a positive role of mycorrhizal fungi in the adaptation of plants to heavy metals in these soils, but the relationships between plant tolerance to heavy metals and the absorption of metals are complex and depend on a range of biological, physical and chemical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytol 16:549–555

    Google Scholar 

  • Adriaensen K, Vangronsveld J, Colpaert JV (2006) A zinc tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558

    CAS  PubMed  Google Scholar 

  • Aggangan N, Dell B, Malajczuk N (1998) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S. T. Geoderma 84:15–27

    CAS  Google Scholar 

  • Ahonen-Jonnarth U, Finlay RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129–138

    CAS  Google Scholar 

  • Ahonen-Jonnarth U, Finlay RD, Van Hees PAW, Lundstrom US (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    CAS  Google Scholar 

  • Aloui A, Dumas-Gaudot E, Daher Z, van Tuinen D, Aschi-Smit S, Morandi D (2012) Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation. Plant Physiol Biochem 60:233–239

    CAS  PubMed  Google Scholar 

  • Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 129–145

    Google Scholar 

  • Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    CAS  PubMed  Google Scholar 

  • Amir H, Pineau R, Violette Z (1997) Premiers résultats sur les endomycorhizes des plantes de maquis miniers de Nouvelle-Calédonie. In: Jaffre T, Reeves RD, Becquer T (eds) The ecology of ultramafic and metalliferous areas. ORSTOM Ed, Nouméa, pp 79–85

    Google Scholar 

  • Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35

    CAS  Google Scholar 

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    CAS  PubMed  Google Scholar 

  • Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595

    CAS  PubMed  Google Scholar 

  • Andrade SAL, Gratao PL, Silveira APD, Schiavinato MA, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370

    CAS  PubMed  Google Scholar 

  • Andrade SAL, Gratao PL, Azevedo RA, Silvera APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207

    CAS  Google Scholar 

  • Arlt M, Schwarz D, Franken P (2009) Analysis of mycorrhizal functioning using transcriptomics. In: Azcon-Aguilar C, Barea JM, Gianinazzi S (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 47–58

    Google Scholar 

  • Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manage 84:93–99

    CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    CAS  PubMed  Google Scholar 

  • Azcon R, Peralvarez MDC, Biro B, Roldan A, Ruiz-Lozano JM (2009) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177

    Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meibner R (2006) Heavy-metal mobilization by mycorrhizal willows (Salix dasyclados). J Plant Nutr Soil Sci 169:516–522

    CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    CAS  PubMed  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158

    CAS  PubMed  Google Scholar 

  • Berthelin J, Munier-Lamy C, Leyval C (1995) Effect of microorganisms on mobility of heavy metals in soils. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. Metals, other inorganics and microbial activities. CRC Lewis, London, pp 3–17

    Google Scholar 

  • Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67

    CAS  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371

    CAS  Google Scholar 

  • Bojarczuk K, Kieliszewska-Rokicka B (2010) Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth) seedlings growth in metal contaminated soil. Water Air Soil Pollut 207:227–240

    CAS  Google Scholar 

  • Boulet F, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonization in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367

    CAS  Google Scholar 

  • Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5(7):e11757. doi:10.1371/journal.pone.0011757

    PubMed Central  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Cabala J, Krupa P, Misz-Kennan M (2009) Heavy metals in mycorrhizal rhizospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water Air Soil Pollut 199:139–149

    CAS  Google Scholar 

  • Carvalho LM, Cacador I, Martins-Loucao MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169

    CAS  Google Scholar 

  • Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant Soil 329:307–313

    CAS  Google Scholar 

  • Chen B, Roos P, Borgaard OK, Zhu YG, Jakobsen I (2005) Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598

    CAS  PubMed  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related protein in a Mediterranean ecosystem affected by copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    CAS  PubMed  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deram A, Languereau-Leman F, Howsam M, Petit D, Van Haluwyn C (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonisation. Soil Biol Biochem 40:845–848

    CAS  Google Scholar 

  • Diaz G, Azcon-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis Cytisoides. Plant Soil 180:241–249

    CAS  Google Scholar 

  • Dubkova P, Suda J, Sudova R (2012) The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol Biochem 44:56–64

    Google Scholar 

  • Dučić T, Parladé J, Polle A (2008) The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Mycorrhiza 18:227–239

    PubMed Central  PubMed  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    CAS  PubMed  Google Scholar 

  • Ferrol N, Gonzalez-Guerrero M, Valderas A, Benabdallah K, Azcon-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559

    CAS  Google Scholar 

  • Galli U, Meier M, Brunold C (1993) Effects of cadmium on nonmycorrhizal and mycorrhizal Norway Spruce seedlings Picea abies (L.) Karst and its ectomycorrhizal fungus Laccaria laccata (Scop ex Fr) Bk and Br, sulfate reduction, thiols and distribution of the heavy-metal. New Phytol 125:837–843

    CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick B (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    CAS  PubMed  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649

    Google Scholar 

  • Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb Ecol 42:87–98

    CAS  PubMed  Google Scholar 

  • Gonçalves SC, Portugal A, Goncalves MT, Vieira R, Martins-Loucao MA, Freitas H (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    PubMed  Google Scholar 

  • Gonçalves SC, Martins-Louçao MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230

    PubMed  Google Scholar 

  • Gonzalez-Chavez C, Haen JD, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    CAS  Google Scholar 

  • Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    CAS  PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    CAS  PubMed  Google Scholar 

  • Griffioen WAJ (1994) Characterization of a heavy metal tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200

    CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    CAS  Google Scholar 

  • Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 186:257–263

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    CAS  Google Scholar 

  • Hassan Sel D, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483

    PubMed  Google Scholar 

  • Hegedüs N, Tamas E, Szilagyi J, Karanyi Z, Nagy I, Penninckx MJ, Pocsi I (2007) Effects of heavy metals on the glutathione status in different ectomycorrhizal Paxillus involutus strains. World J Microbiol Biotechol 23:1339–1343

    Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Honglin H, Shuzhen Z, Chen BD, Wu N, Shan XQ, Christ P (2006) Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. J Agric Food Chem 54:9377–9382

    Google Scholar 

  • Hrynkieiuicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44

    Google Scholar 

  • Jacob C, Courbot M, Brun A, Steinman HM, Jaquot JP, Botton B, Chalot M (2001) Molecular cloning, characterizing and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur J Biochem 268:3223–3232

    CAS  PubMed  Google Scholar 

  • Janouskova M, Vosatka M, Rossi L, Lugon-Moulin N (2007) Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types. Appl Soil Ecol 35:502–510

    Google Scholar 

  • Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AMF fungal spore communities with the same hosts but different soil chemistries over local geographic scales. Oecologia 168:187–197

    PubMed  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33:351–357

    CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Joshi UN, Luthra YP (2000) An overview of heavy metals: impact and remediation. Curr Sci 78:2–4

    Google Scholar 

  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010a) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319

    CAS  PubMed  Google Scholar 

  • Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010b) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249

    CAS  PubMed  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Trumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremediation J 11:33–43

    CAS  Google Scholar 

  • Khan AG, Kuek C, Chauhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  PubMed  Google Scholar 

  • Krupa P, Kozdroj J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90

    CAS  Google Scholar 

  • L’Huillier L, Wulf A, Gâteblé G, Fogliani B, Zongo C, Jaffré T (2010) La restauration des sites miniers. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 147–230

    Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    CAS  PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros S, Ottonello S, Bonfante P (2002) Differential expression of metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    CAS  PubMed  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    CAS  PubMed  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    CAS  PubMed  Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, New York, pp 165–185

    Google Scholar 

  • Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soils properties. Water Air Soil Pollut 84:203–216

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Li Y, Peng J, Shi P, Zhao B (2009) The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Chemosphere 75:894–899

    CAS  PubMed  Google Scholar 

  • Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    CAS  PubMed  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    CAS  PubMed  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    CAS  Google Scholar 

  • Machuka A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Google Scholar 

  • Majorel C, Hannibal L, Soupe M, Carriconde F, Ducousso M, Lebrun M, Jourand P (2012) Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach. Mol Ecol 21:2208–2223

    CAS  PubMed  Google Scholar 

  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1263

    CAS  PubMed  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Pissara J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699

    CAS  PubMed  Google Scholar 

  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2008) Application of manure and compost contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620

    CAS  PubMed  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Medina A, Vassilev N, Azcon R (2010) The interactive effect of an AM fungus and an organic amendment with regards to improving inoculum potential and the growth and nutrition of Trifolium repens in Cd-contaminated soils. Appl Soil Ecol 44:181–189

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    CAS  PubMed  Google Scholar 

  • Neagoe A, Lordache V, Bergmann H, Kothe E (2013) Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J Plant Nutr Soil 176:273–286

    CAS  Google Scholar 

  • Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear macroprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X Ray Spectrom 37:129–132

    CAS  Google Scholar 

  • Orlowska E, Orlowski D, Mesjasz-Przybylowicz J, Turnau K (2011a) Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremediation 13:185–205

    PubMed  Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011b) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    CAS  PubMed  Google Scholar 

  • Orlowska E, Godzik B, Turnau K (2012) Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environ Pollut 168:121–130

    CAS  PubMed  Google Scholar 

  • Ortega-Larrocea MP, Siebe C, Estrada A, Webster R (2007) Mycorrhizal inoculums potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available P. Appl Soil Ecol 37:129–138

    Google Scholar 

  • Ortega-Larrocea MP, Xoconostle-Cazares B, Moldano-Mendoza IE, Carrillo-Gonzalez R, Hernández-Hernández J, Garduño MD, López-Meyer M, Gómez-Flores L, González-Chávez M (2010) Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ Pollut 158:1922–1931

    CAS  Google Scholar 

  • Ouziad F, Hildlebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    CAS  PubMed  Google Scholar 

  • Pawlowska TE, Blaszkowski J, Ruhling A (1996) The mycorrhiza status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Google Scholar 

  • Perrier N (2005) Bio-Géodiversité fonctionnelle des sols latéritiques miniers : application à la restauration écologique (massif du Koniambo, Nouvelle-Calédonie). PhD thesis, University of New Caledonia, Noumea

    Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458

    PubMed  Google Scholar 

  • Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003

    CAS  Google Scholar 

  • Rajkumar M, Sandhia S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  PubMed  Google Scholar 

  • Ray P, Tiwari R, Reddy GU, Adholeya A (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World J Microbial Biotechnol 21:309–315

    CAS  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 40:2710–2712

    CAS  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    CAS  PubMed  Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    CAS  PubMed  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    CAS  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    CAS  PubMed  Google Scholar 

  • Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jacobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436

    CAS  PubMed  Google Scholar 

  • Sadeque HFR, Kilham K, Alexander I (2006) Influences of arbuscular fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water: rhizosphere: perspectives and challenges. Plant Soil 283:33–41

    Google Scholar 

  • Schechter SP, Bruns TD (2012) Edaphic sorting drives arbuscular mycorrhizal fungal community assembly in a serpentine/non-serpentine mosaic landscape. Ecosphere 3(54):art 42

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    CAS  Google Scholar 

  • Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated substrates. Appl Soil Ecol 40:19–29

    Google Scholar 

  • Tseng CC, Wang JY, Yang L (2009) Accumulation of copper, lead and zinc by in situ plants inoculated with AM fungi in multicontaminated soil. Commun Soil Sci Plant Anal 40:2122

    Google Scholar 

  • Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214

    CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    PubMed  Google Scholar 

  • Urban A, Puschenreiter M, Strauss J, Gorfer M (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soils. Mycorrhiza 18:339–354

    PubMed  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environ Microbiol 8:971–983

    PubMed  Google Scholar 

  • Vallino M, Martino E, Boella F, Murat C, Chiapello M, Peretto S (2009) Cu, Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. FEMS Microbiol Lett 293:48–57

    CAS  PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcon R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    CAS  PubMed  Google Scholar 

  • Vodnik D, Grcman H, Macek I, van Elteren JT, Kovačevič M (2008) The contribution of Glomalin-related protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    CAS  PubMed  Google Scholar 

  • Walker RF, McLaughlin SB, West DC (2004) Establishment of sweet birch on surface mine spoil as influenced by mycorrhizal inoculation and fertility. Restor Ecol 12:8–19

    Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    CAS  PubMed  Google Scholar 

  • Wu FY, Be YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218

    Google Scholar 

  • Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077

    CAS  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Valerie Medevielle for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Amir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amir, H., Jourand, P., Cavaloc, Y., Ducousso, M. (2014). Role of Mycorrhizal Fungi in the Alleviation of Heavy Metal Toxicity in Plants. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_15

Download citation

Publish with us

Policies and ethics