Skip to main content

Antifouling Surfaces Based on Polymer Brushes

  • Chapter
  • First Online:
Antifouling Surfaces and Materials

Abstract

Biofouling is a crucial problem in the maritime industry for both military and commercial vessels. One promising approach to overcome the problem is creating a nonfouling surface with functional polymer brushes, which usually presents large exclusion volumes to inhibit protein and bacterial adhesion, or possess bactericidal functional groups. Previous studies show the increasing reports in creating an antifouling surface using polymer brushes via various techniques such as self-assembly through hydrophobic or electrostatic interactions, and covalent immobilization by means of either “grafting-to” or “grafting-from” strategy. These advances in techniques for surface modification and tailoring of polymer composition and architecture have resulted in many promising developments in the antifouling field. This chapter summarizes such recent research progress about polymer-brush-based antifouling surface, and focuses mainly on the development and application of nonfouling surfaces with anti-adhesive and/or bactericidal polymer brushes. Various types of polymer brushes (PEGylated polymers, amphiphilic copolymers, zwitterionic polymers, bioinspired polymers, bactericidal polymer, and polymers incorporating antimicrobial agents, etc.) are particularly suited for the preparation of functional bioactive surfaces, including anti-adsorption for cell and protein, antibacterial, and biomolecule-coupled and patterned surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Article  Google Scholar 

  2. Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77

    Article  Google Scholar 

  3. Neoh KG, Shi ZL, Kang ET (2013) Anti-adhesive and antibacterial polymer brushes. In: Moriarty TF, Zaat SAJ, Busscher HJ (eds) Biomaterials associated infection. Springer, New York, pp 405–432

    Google Scholar 

  4. Xu FJ, Neoh KG, Kang ET (2009) Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci 34(8):719–761

    Article  Google Scholar 

  5. Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41(17):5599–5612

    Article  Google Scholar 

  6. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413

    Article  Google Scholar 

  7. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Article  Google Scholar 

  8. Chen H, Brook MA, Sheardown H (2004) Silicone elastomers for reduced protein adsorption. Biomaterials 25(12):2273–2282

    Article  Google Scholar 

  9. Lan S, Veiseh M, Zhang M (2005) Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron 20(9):1697–1708

    Article  Google Scholar 

  10. Zhang F, Kang ET, Neoh KG, Huang W (2001) Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. J Biomater Sci Polym Ed 12(5):515–531

    Article  Google Scholar 

  11. Li Y, Neoh KG, Cen L, Kang ET (2003) Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol Bioeng 84(3):305–313

    Article  Google Scholar 

  12. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142(1):149–158

    Article  Google Scholar 

  13. Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6(5):2427–2448

    Article  Google Scholar 

  14. Cao L, Chang M, Lee CY, Castner DG, Sukavaneshvar S, Ratner BD, Horbett TA (2007) Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. J Biomedical Mater Res Part A 81(4):827–837

    Article  Google Scholar 

  15. Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY (2008) A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 24(10):5453–5458

    Article  Google Scholar 

  16. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY (2010) Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 26(5):3522–3530

    Article  Google Scholar 

  17. Heuberger M, Drobek T, Voros J (2004) About the role of water in surface-grafted poly(ethylene glycol) layers. Langmuir 20(22):9445–9448

    Article  Google Scholar 

  18. Vladkova T (2007) Surface engineering for non-toxic biofouling control. J Univ Chem Technol Metall 42:239–256

    Google Scholar 

  19. Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8(9):38–46

    Article  Google Scholar 

  20. Feller LM, Cerritelli S, Textor M, Hubbell JA, Tosatti SGP (2005) Influence of Poly(propylene sulfide-block-ethylene glycol) Di- and Triblock Copolymer architecture on the formation of molecular adlayers on gold surfaces and their effect on protein resistance: a candidate for surface modification in biosensor research. Macromolecules 38(25):10503–10510

    Article  Google Scholar 

  21. Bearinger JP, Terrettaz S, Michel R, Tirelli N, Vogel H, Textor M, Hubbell JA (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater 2(4):259–264

    Article  Google Scholar 

  22. Zoulalian V, Zurcher S, Tosatti S, Textor M, Monge S, Robin JJ (2010) Self-assembly of poly(ethylene glycol)-poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability. Langmuir 26(1):74–82

    Article  Google Scholar 

  23. Zoulalian V, Monge S, Zurcher S, Textor M, Robin JJ, Tosatti S (2006) Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 110(51):25603–25605

    Article  Google Scholar 

  24. Zhao YH, Zhu BK, Kong L, Xu YY (2007) Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer. Langmuir 23(10):5779–5786

    Article  Google Scholar 

  25. Benhabbour SR, Liu L, Sheardown H, Adronov A (2008) Protein resistance of surfaces prepared by chemisorption of monothiolated poly(ethylene glycol) to gold and dendronization with aliphatic polyester dendrons: effect of hydrophilic dendrons. Macromolecules 41(7):2567–2576

    Google Scholar 

  26. Sharma S, Johnson RW, Desai TA (2004) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20(2):348–356

    Article  Google Scholar 

  27. Ma H, Hyun J, Stiller P, Chilkoti A (2004) “Non-Fouling” oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16(4):338–341

    Article  Google Scholar 

  28. McPherson T, Kidane A, Szleifer I, Park K (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14(1):176–186

    Article  Google Scholar 

  29. Gunkel G, Weinhart M, Becherer T, Haag R, Huck WT (2011) Effect of polymer brush architecture on antibiofouling properties. Biomacromolecules 12(11):4169–4172

    Article  Google Scholar 

  30. Zhou Y, Wang S, Ding B, Yang Z (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138 (1–3):578–585

    Article  Google Scholar 

  31. Hu F, Neoh KG, Cen L, Kang ET (2006) Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 7(3):809–816

    Article  Google Scholar 

  32. Xu FJ, Zhao JP, Kang ET, Neoh KG, Li J (2007) Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization. Langmuir 23(16):8585–8592

    Article  Google Scholar 

  33. Ma H, Li D, Sheng X, Zhao B, Chilkoti A (2006) Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Langmuir 22(8):3751–3756

    Article  Google Scholar 

  34. Rodriguez-Emmenegger C, Kylian O, Houska M, Brynda E, Artemenko A, Kousal J, Alles AB, Biederman H (2011) Substrate-independent approach for the generation of functional protein resistant surfaces. Biomacromolecules 12(4):1058–1066

    Article  Google Scholar 

  35. Brahim S, Narinesingh D, Guiseppi-Elie A (2003) Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4(3):497–503

    Article  Google Scholar 

  36. Mei Y, Wu T, Xu C, Langenbach KJ, Elliott JT, Vogt BD, Beers KL, Amis EJ, Washburn NR (2005) Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces. Langmuir 21(26):12309–12314

    Article  Google Scholar 

  37. Mirzadeh H, Katbab AA, Khorasani MT, Burford RP, Gorgin E, Golestani A (1995) Cell attachment to laser-induced AAm- and HEMA-grafted ethylene-propylene rubber as biomaterial: in vivo study. Biomaterials 16(8):641–648

    Article  Google Scholar 

  38. Huang X, Doneski LJ, Wirth MJ (1998) Surface-confined living radical polymerization for coatings in capillary electrophoresis. Anal Chem 70 (19):4023–4029

    Article  Google Scholar 

  39. Cringus-Fundeanu I, Luijten J, van der Mei HC, Busscher HJ, Schouten AJ (2007) Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. Langmuir 23(9):5120–5126

    Article  Google Scholar 

  40. Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ (2008) Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and surfaces B. Biointerfaces 64(2):297–301

    Article  Google Scholar 

  41. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413

    Article  Google Scholar 

  42. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21(7):3044–3053

    Article  Google Scholar 

  43. Yarbrough JC, Rolland JP, DeSimone JM, Callow ME, Finlay JA, Callow JA (2006) Contact Angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39(7):2521–2528

    Article  Google Scholar 

  44. Powell KT, Cheng C, Wooley KL (2007) Complex amphiphilic hyperbranched fluoropolymers by atom transfer radical self-condensing vinyl (co)polymerization. Macromolecules 40(13):4509–4515

    Article  Google Scholar 

  45. Finlay JA, Krishnan S, Callow ME, Callow JA, Dong R, Asgill N, Wong K, Kramer EJ, Ober CK (2008) Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Langmuir 24(2):503–510

    Article  Google Scholar 

  46. Li L, Chen S, Zheng J, Ratner BD, Jiang S (2005) Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. J Phys Chem B 109(7):2934–2941

    Article  Google Scholar 

  47. Chen S, Zheng J, Li L, Jiang S (2005) Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127(41):14473–14478

    Article  Google Scholar 

  48. Kim K, Kim C, Byun Y (2004) Biostability and biocompatibility of a surface-grafted phospholipid monolayer on a solid substrate. Biomaterials 25(1):33–41

    Article  Google Scholar 

  49. Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y (2004) Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Biomacromolecules 5(6):2308–2314

    Article  Google Scholar 

  50. Feng W, Brash JL, Zhu S (2006) Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 27(6):847–855

    Article  Google Scholar 

  51. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–1361

    Article  Google Scholar 

  52. Yang W, Chen S, Cheng G, Vaisocherova H, Xue H, Li W, Zhang J, Jiang S (2008) Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 24(17):9211–9214

    Article  Google Scholar 

  53. Limpoco FT, Bailey RC (2011) Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions. J Am Chem Soc 133(38):14864–14867

    Article  Google Scholar 

  54. Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A (2009) Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules 10(8):2092–2100

    Article  Google Scholar 

  55. Zhang Z, Chao T, Chen S, Jiang S (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22(24):10072–10077

    Article  Google Scholar 

  56. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199

    Article  Google Scholar 

  57. Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29(32):4285–4291

    Article  Google Scholar 

  58. Kitano H, Kawasaki A, Kawasaki H, Morokoshi S (2005) Resistance of zwitterionic telomers accumulated on metal surfaces against nonspecific adsorption of proteins. J Colloid Interface Sci 282(2):340–348

    Article  Google Scholar 

  59. Kitano H, Tada S, Mori T, Takaha K, Gemmei-Ide M, Tanaka M, Fukuda M, Yokoyama Y (2005) Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 21(25):11932–11940

    Article  Google Scholar 

  60. Chen S, Jiang S (2008) An New Avenue to Nonfouling Materials. Adv Mater 20(2):335–338

    Article  Google Scholar 

  61. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339

    Article  Google Scholar 

  62. Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WT (2007) Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir 23(6):3314–3321

    Article  Google Scholar 

  63. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A 98(11):5981–5985

    Article  Google Scholar 

  64. Cen L, Neoh KG, Kang ET (2003) Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces. Langmuir 19(24):10295–10303

    Article  Google Scholar 

  65. Lin J, Qiu S, Lewis K, Klibanov AM (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18(5):1082–1086

    Article  Google Scholar 

  66. Lin J, Qiu S, Lewis K, Klibanov AM (2003) Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83(2):168–172

    Article  Google Scholar 

  67. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  Google Scholar 

  68. Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. J Biomedical Mater Res Part A 87(4):1061–1074

    Article  Google Scholar 

  69. Cao Z, Sun Y (2008) N-halamine-based chitosan: preparation, characterization, and antimicrobial function. J Biomedical Mater Res Part A 85(1):99–107

    Article  Google Scholar 

  70. Luo J, Sun Y (2008) Acyclic N-halamine-based biocidal tubing: preparation, characterization, and rechargeable biofilm-controlling functions. J Biomedical Mater Res Part A 84(3):631–642

    Article  Google Scholar 

  71. Luo J, Sun Y (2006) Acyclic N-halamine-based fibrous materials: preparation, characterization, and biocidal functions. J Polym Sci, Part A: Polym Chem 44(11):3588–3600

    Google Scholar 

  72. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5(3):877–882

    Article  Google Scholar 

  73. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surface–2: how high density cationic surfaces kill bacterial cells. Biomaterials 28(32):4870–4879

    Article  Google Scholar 

  74. Xu FJ, Yuan SJ, Pehkonen SO, Kang ET, Neoh KG (2006) Antimicrobial surfaces of viologen-quaternized poly((2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. Nanobiotechnol 2(3–4):123–134

    Article  Google Scholar 

  75. Lenoir S, Pagnoulle C, Galleni M, Compere P, Jerome R, Detrembleur C (2006) Polyolefin matrixes with permanent antibacterial activity: preparation, antibacterial activity, and action mode of the active species. Biomacromolecules 7(8):2291–2296

    Article  Google Scholar 

  76. Thomassin JM, Lenoir S, Riga J, Jerome R, Detrembleur C (2007) Grafting of poly[2-(tert-butylamino)ethyl methacrylate] onto polypropylene by reactive blending and antibacterial activity of the copolymer. Biomacromolecules 8(4):1171–1177

    Article  Google Scholar 

  77. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17(20):6336–6343

    Article  Google Scholar 

  78. Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20(25):10949–10955

    Article  Google Scholar 

  79. Park KD, Kim YS, Han DK, Kim YH, Lee EH, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19(7–9):851–859

    Article  Google Scholar 

  80. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    Article  Google Scholar 

  81. Wach JY, Bonazzi S, Gademann K (2008) Antimicrobial surfaces through natural product hybrids. Angewandte Chemie 47(37):7123–7126

    Article  Google Scholar 

  82. Zhang F, Shi ZL, Chua PH, Kang ET, Neoh KG (2007) Functionalization of titanium surfaces via controlled living radical polymerization: from antibacterial surface to surface for osteoblast adhesion. Industrial Eng Chem Res 46(26):9077–9086

    Article  Google Scholar 

  83. Bagheri M, Beyermann M, Dathe M (2009) Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother 53(3):1132–1141

    Article  Google Scholar 

  84. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns: J Int Soc Burn Injuries 26(2):117–130

    Google Scholar 

  85. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns: J Int Soc Burn Injuries 26(2):131–138

    Google Scholar 

  86. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  Google Scholar 

  87. Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    Article  Google Scholar 

  88. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–4258

    Article  Google Scholar 

  89. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132

    Article  Google Scholar 

  90. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  Google Scholar 

  91. Dalsin JL, Lin L, Tosatti S, Voros J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21(2):640–646

    Article  Google Scholar 

  92. Dalsin JL, Hu BH, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125(14):4253–4258

    Article  Google Scholar 

  93. Lee H, Lee KD, Pyo KB, Park SY, Lee H (2010) Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 26(6):3790–3793

    Article  Google Scholar 

  94. Gillich T, Benetti EM, Rakhmatullina E, Konradi R, Li W, Zhang A, Schluter AD, Textor M (2011) Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. J Am Chem Soc 133(28):10940–10950

    Article  Google Scholar 

  95. Malisova B, Tosatti S, Textor M, Gademann K, Zurcher S (2010) Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir 26(6):4018–4026

    Article  Google Scholar 

  96. Wach JY, Malisova B, Bonazzi S, Tosatti S, Textor M, Zurcher S, Gademann K (2008) Protein-resistant surfaces through mild dopamine surface functionalization. Chemistry 14(34):10579–10584

    Article  Google Scholar 

  97. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  Google Scholar 

  98. Pechey A, Elwood CN, Wignall GR, Dalsin JL, Lee BP, Vanjecek M, Welch I, Ko R, Razvi H, Cadieux PA (2009) Anti-adhesive coating and clearance of device associated uropathogenic Escherichia coli cystitis. J Urol 182(4):1628–1636

    Article  Google Scholar 

  99. Gunawan RC, King JA, Lee BP, Messersmith PB, Miller WM (2007) Surface presentation of bioactive ligands in a nonadhesive background using DOPA-tethered biotinylated poly(ethylene glycol). Langmuir 23(21):10635–10643

    Article  Google Scholar 

  100. Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S (2010) Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 31(7):1486–1492

    Article  Google Scholar 

  101. Brault ND, Gao C, Xue H, Piliarik M, Homola J, Jiang S, Yu Q (2010) Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 25(10):2276–2282

    Article  Google Scholar 

  102. Shi Z, Neoh KG, Kang ET, Poh C, Wang W (2008) Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomedical Mater Res Part A 86A(4):865–872

    Article  Google Scholar 

  103. Statz AR, Barron AE, Messersmith PB (2008) Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft matter 4(1):131–139

    Article  Google Scholar 

  104. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127(22):7972–7973

    Article  Google Scholar 

  105. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127(45):15843–15847

    Article  Google Scholar 

  106. Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S (2008) Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. J Phys Chem B 112(48):15269–15274

    Article  Google Scholar 

  107. Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q (2012) Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J Mater Chem 22(26):13123–13131

    Article  Google Scholar 

  108. Falconnet D, Koenig A, Assi F, Textor M (2004) A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv Funct Mater 14(8):749–756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, Q., Zhou, F. (2015). Antifouling Surfaces Based on Polymer Brushes. In: Zhou, F. (eds) Antifouling Surfaces and Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45204-2_3

Download citation

Publish with us

Policies and ethics