Skip to main content

Photochemistry of Terrestrial Exoplanet Atmospheres

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1290 Accesses

Abstract

Terrestrial exoplanets are exciting objects to study because they could be potential habitats for extraterrestrial life. Both the search and the characterization of terrestrial exoplanets are flourishing. Particularly, NASA’s Kepler spacecraft has discovered Earth-sized planets receiving similar amount of radiative heat as Earth. Central in the studies of terrestrial exoplanets is to characterize their atmospheres and to search for potential biosignature gases (the atmospheric components that indicate biogenic surface emissions). To achieve this goal, a deep understanding of the key physical and chemical processes that control the atmospheric composition and the atmosphere-surface interaction is pivotal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel JRP, Cheng AYS, Woolf NJ (1986) Nature 322:341–343

    Google Scholar 

  • Atreya SK, Adams EY, Niemann HB et al (2006) Planet Space Sci 54:1177

    Google Scholar 

  • Barclay T, Rowe JF, Lissauer JJ et al (2013a) Nature 494:452–454

    Google Scholar 

  • Barclay T, Burke C, Howell SB et al (2013b) Astrophys J 768:101

    Google Scholar 

  • Batalha NM, Borucki WJ, Koch DG et al (2010) Astrophys J Lett 713:L109–L114

    Google Scholar 

  • Batalha NM, Borucki WJ, Bryson ST et al (2011) Astrophys J 729:27

    Google Scholar 

  • Bean JL, Miller-Ricci Kempton E, Homeier D (2010) Nature 468:669–672

    Google Scholar 

  • Beichman CA, Woolf NJ, Lindensmith CA (1999) The Terrestrial Planet Finder (TPF): a NASA Origins Program to search for habitable planets

    Google Scholar 

  • Beichman C, Lawson P, Lay O et al (2006). Status of the terrestrial planet under interferometer (TPF-I). In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6268

    Google Scholar 

  • Belu AR, Selsis F, Morales J-C et al (2011) Astron Astrophys 525:A83

    Google Scholar 

  • Berta ZK, Charbonneau D, Desert J-M et al (2012) Astrophys J 747:35

    Google Scholar 

  • Birkby JL, de Kok RJ, Brogi M et al (2013) Mon Not R Astron Soc 436:L35

    Google Scholar 

  • Bonfils X, Gillon M, Forveille T et al (2011) Astron Astrophys 528:A111

    Google Scholar 

  • Borucki WJ, Koch DG, Batalha N et al (2012) Astrophys J 745:120

    Google Scholar 

  • Borucki WJ, Agol E, Fressin F et al (2013) Science 340(6132):587–590

    Google Scholar 

  • Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. Springer, Dordrecht

    Google Scholar 

  • Broeg C, Fortier A, Ehrenreich D et al (2013). CHEOPS: a transit photometry mission for ESA’s small mission programme. In: European Physical Journal web of conferences, vol 47, p 3005

    Google Scholar 

  • Brogi M, Snellen IAG, de Kok RJ et al (2012) Nature 486:502–504

    Google Scholar 

  • Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Astrophys J 568:377–384

    Google Scholar 

  • Charbonneau D, Allen LE, Megeath ST et al (2005) Astrophys J 626:523–529

    Google Scholar 

  • Charbonneau D, Berta ZK, Irwin J et al (2009) Nature 462:891–894

    Google Scholar 

  • Chilcote, J. K., Larkin, J. E., Maire, J et al Performance of the integral field spectrograph for the Gemini Planet Imager. In volume 8446 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.

    Google Scholar 

  • Cochran WD, Fabrycky DC, Torres G et al (2011) Astrophys J Suppl Ser 197:7

    Google Scholar 

  • Coustenis A (2005) Space Sci Rev 116:171–184

    Google Scholar 

  • Crampton, D. and Simard, L. (2006). Instrument concepts and scientific opportunities for TMT. In volume 6269 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.

    Google Scholar 

  • Croll B, Albert L, Jayawardhana R et al (2011) Astrophys J 736:78

    Google Scholar 

  • Dawson RI, Fabrycky DC (2010) Astrophys J 722:937–953

    Google Scholar 

  • de Kok RJ, Brogi M, Snellen IAG et al (2013) Astron Astrophys 554:A82

    Google Scholar 

  • de Mooij EJW, Brogi M, de Kok RJ et al (2012) Astron Astrophys 538:A46

    Google Scholar 

  • Deming D, Seager S, Richardson LJ, Harrington J (2005) Nature 434:740–743

    Google Scholar 

  • Deming D, Seager S, Winn J et al (2009) Publ Astron Soc Pac 121:952–967

    Google Scholar 

  • Deming D, Wilkins A, McCullough P et al (2013) Astrophys J 774:95

    Google Scholar 

  • Demory B-O, Gillon M, Deming D et al (2011) Astron Astrophys 533:A114

    Google Scholar 

  • Demory B-O, Gillon M, Seager S et al (2012) Astrophys J Lett 751:L28

    Google Scholar 

  • Desert J-M, Bean J, Miller-Ricci Kempton E et al (2011) Astrophys J Lett 731:L40

    Google Scholar 

  • Dragomir D, Mathews JM, Howard AW et al (2012) Astrophys J 759:L41

    Google Scholar 

  • Dressing CD, Charbonneau D (2013) Astrophys J 767:95

    Google Scholar 

  • Dumusque X, Pepe F, Lovis C et al (2012) Nature 491:207–211

    Google Scholar 

  • Figueira P, Marmier M, Boue G et al (2012) Astron Astrophys 541:A139

    Google Scholar 

  • Fogtmann-Schulz A, Hinrup B, Van Eylen V et al (2014) Astrophys J 781:67

    Google Scholar 

  • Fressin F, Torres G, Rowe JF et al (2012) Nature 482:195–198

    Google Scholar 

  • Fressin F, Torres G, Charbonneau D et al (2013) Astrophys J 766:81

    Google Scholar 

  • Gardner JP, Mather JC, Clampin M et al (2006) Space Sci Rev 123:485–606

    Google Scholar 

  • Gautier TN III, Charbonneau D, Rowe JF et al (2012) Astrophys J 749:15

    Google Scholar 

  • Gilliland RL, Marcy GW, Rowe JF et al (2013) Astrophys J 766:40

    Google Scholar 

  • Gilmozzi R, Spyromilio J (2008) The 42 m European ELT: status. In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 7012

    Google Scholar 

  • Gladstone GR, Allen M, Yung YL (1996) Icarus 119:1–52

    Google Scholar 

  • Guyon O, Pluzhnik EA, Kuchner MJ et al (2006) Astrophys J Suppl Ser 167:81–99

    Google Scholar 

  • Howard AW, Johnson JA, Marcy GW et al (2011) Astrophys J 730:10

    Google Scholar 

  • Howard AW, Marcy GW, Bryson ST et al (2012) Astrophys J Suppl Ser 201:15

    Google Scholar 

  • Howard AW, Sanchis-Ojeda R, Marcy GW et al (2013) Nature 503:381–384

    Google Scholar 

  • Hu R (2013) Atmospheric photochemistry, surface features, and potential biosignature gases of terrestrial exoplanets, Ph.D. thesis, MIT

    Google Scholar 

  • Hu R, Seager S (2014) Astrophys J 784:63

    Google Scholar 

  • Hu R, Seager S, Bains W (2012) Astrophys J 761:166

    Google Scholar 

  • Hu R, Seager S, Bains W (2013) Astrophys J 769:6

    Google Scholar 

  • Johns M, McCarthy P, Raybould K et al (2012) Giant Magellan Telescope: overview. In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 8444

    Google Scholar 

  • Kaltenegger L, Traub WA (2009) Astrophys J 698:519–527

    Google Scholar 

  • Kasting JF, Catling D (2003) Annu Rev Astron Astrophys 41:429–463

    Google Scholar 

  • Kasting JF, Liu SC, Donahue TM (1979) J Geophys Res 84:3097–3107

    Google Scholar 

  • Kasting JF, Holland HD, Pinto JP (1985) J Geophys Res 90:10497

    Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Icarus 101:108–128

    Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE et al (2007) Nature 447:183–186

    Google Scholar 

  • Knutson HA, Dragomir D, Kreidberg L et al (2014) ApJ 794:795

    Google Scholar 

  • Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Science 339:1398–1401

    Google Scholar 

  • Kopparapu RK, Ramirez R, Kasting JF et al (2013) Astrophys J 765:131

    Google Scholar 

  • Kreidberg L, Bean JL, Desert JM et al (2014) Nature 505:69–72

    Google Scholar 

  • Kuchner MJ, Traub WA (2002) Astrophys J 570:900–908

    Google Scholar 

  • Lawson PR, Dooley JA (2005) Technology plan for the terrestrial planet finder interferometer. NASA STI/Recon Tech Rep News 6:15630

    Google Scholar 

  • Leger A, Pirre M, Marceau FJ (1993) Astron Astrophys 277:309

    Google Scholar 

  • Leger A, Mariotti JM, Mennesson B et al (1996) Icarus 123:249–255

    Google Scholar 

  • Leger A, Rouan D, Schneider J et al (2009) Astron Astrophys 506:287–302

    Google Scholar 

  • Levine M, Lisman D, Shaklan S et al (2009) Terrestrial Planet Finder Coronagraph (TPF-C) flight baseline concept. ArXiv e-prints

    Google Scholar 

  • Liang M-C, Parkinson CD, Lee AY-T, Yung YL, Seager S (2003) ApJ 596:247

    Google Scholar 

  • Line MR, Liang MC, Yung YL (2010) ApJ 717:496

    Google Scholar 

  • Lissauer JJ, Fabrycky DC, Ford EB et al (2011) Nature 470:53–58

    Google Scholar 

  • Lockwood AC, Johnson JA, Bender CF et al (2014) Astrophys J 783:L29

    Google Scholar 

  • Marcy GW, Issacson H, Howard AW et al (2014) Astrophys J Suppl Ser 210:20

    Google Scholar 

  • Mayor M, Udry S, Lovis C et al (2009) Astron Astrophys 493:639–644

    Google Scholar 

  • Moses JI, Visscher C, Fortney JJ et al (2011) ApJ 737:15

    Google Scholar 

  • Moses JI, Line MR, Visscher C et al (2013) ApJ 777:34

    Google Scholar 

  • Muirhead PS, Hamren K, Schlawin E, et al (2012), ApJ 750:L37

    Google Scholar 

  • Nutzman P, Charbonneau D (2008) Publ Astron Soc Pac 120:317–327

    Google Scholar 

  • Oppenheimer BR, Hinkley S (2009) Annu Rev Astron Astrophys 47:253–289

    Google Scholar 

  • Pepe F, Lovis C, Segransan D et al (2011) Astron Astrophys 534:A58

    Google Scholar 

  • Pepe F, Cameron AC, Latham DW et al (2013) Nature 503:377–380

    Google Scholar 

  • Petigura EA, Marcy GW, Howard AW (2013a) Astrophys J 770:69

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013b) PNAS 110:19273–19278

    Google Scholar 

  • Pierrehumbert R, Gaidos E (2011) Astrophys J Lett 734:L13

    Google Scholar 

  • Quintana EV, Barclay T, Raymond SN et al (2014) Science 344:277–280

    Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2013) Exp Astron (submitted)

    Google Scholar 

  • Ricker GR, Latham DW, Vanderspek RK et al (2010) Transiting Exoplanet Survey Satellite (TESS). In: Bulletin of the American Astronomical Society, vol 42, p 450.06

    Google Scholar 

  • Rivera EJ, Lissauer JJ, Butler RP et al (2005) Astrophys J 634:625–640

    Google Scholar 

  • Rivera EJ, Butler RP, Vogt SS et al (2010) Astrophys J 708:1492–1499

    Google Scholar 

  • Rodler F, Lopez-Morales M, Ribas I (2012) Astrophys J Lett 753:L25

    Google Scholar 

  • Rodler F, Kurster M, Barnes JR (2013) Mon Not R Astron Soc 432:1980–1988

    Google Scholar 

  • Rowe JF, Bryson ST, Marcy GW (2014) Astrophys J 784:45

    Google Scholar 

  • Salpeter EE (1955) Astrophys J 121:161

    Google Scholar 

  • Seager S (2010) Exoplanet atmospheres: physical processes. Princeton University Press, Princeton

    Google Scholar 

  • Seager S, Deming D (2010) Annu Rev Astron Astrophys 48:631–672

    Google Scholar 

  • Seager S, Sasselov DD (1998) Astrophys J Lett 502:L157

    Google Scholar 

  • Seager S, Sasselov DD (2000) Astrophys J 537:916–921

    Google Scholar 

  • Seager S, Whitney BA, Sasselov DD (2000) Astrophys J 540:504–520

    Google Scholar 

  • Seager S, Bains W, Hu R (2013) Astrophys J 777:95

    Google Scholar 

  • Seager S, Turnbull M, Sparks W et al (2014) Exo-S: Starshade probe-class exoplanet direct imaging mission concept – interim report

    Google Scholar 

  • Segura A, Meadows VS, Kasting JF et al (2007) Astron Astrophys 472:665–679

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Selsis F, Despois D, Parisot J-P (2002) Astron Astrophys 388:985–1003

    Google Scholar 

  • Snellen IAG, de Kok RJ, le Poole R et al (2013) Astrophys J 764:182

    Google Scholar 

  • Spergel D, Gehrels N, Breckinridge J et al (2013) Wide-field infrared survey telescope-astrophysics focused telescope assets. WFIRST-AFTA final report. ArXiv e-prints

    Google Scholar 

  • Stapelfeldt K, Belikov R, Bryden G et al (2014) Exoplanet direct imaging: coronagraph probe mission study “Exo-C” – Interim report

    Google Scholar 

  • Strobel DF (1969) J Atmos Sci 26:906–911

    Google Scholar 

  • Strobel DF (1973) J Atmos Sci 30:489–498

    Google Scholar 

  • Swift JJ, Johnson JA, Morton TD et al (2013) Astrophys J 764:105

    Google Scholar 

  • Tian F, France K, Linsky J et al (2014) Earth Planet Sci Lett 385:22–27

    Google Scholar 

  • Traub WA (2012) Astrophys J 745:20

    Google Scholar 

  • Traub WA, Levine M, Shaklan S et al (2006) TPF-C: status and recent progress. In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6268

    Google Scholar 

  • Traub WA, Kaltenegger L, Jucks KW (2008) Spectral characterization of Earth-like transiting exoplanets. In: Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 7010

    Google Scholar 

  • Trauger JT, Traub WA (2007) Nature 446:771–773

    Google Scholar 

  • Tuomi M, Anglada-Escude G, Gerlach E et al (2013) Astron Astrophys 549:A48

    Google Scholar 

  • Udry S, Bonfils X, Delfosse X et al (2007) Astron Astrophys 469:L43–L47

    Google Scholar 

  • Van Grootel V, Gillon M, Valencia D et al (2014) Astrophys J 786:2

    Google Scholar 

  • Vogt SS, Wittenmyer RA, Butler RP et al (2010) Astrophys J 708:1366–1375

    Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Wiley, New York

    Google Scholar 

  • Winn JN, Matthews JM, Dawson RI et al (2011) Astrophys J Lett 737:L18

    Google Scholar 

  • Wordsworth R, Pierrehumbert R (2014) Astrophys J Lett 785:L20

    Google Scholar 

  • Yung YL, Demore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, New York

    Google Scholar 

  • Yung YL, Allen M, Pinto JP (1984) Astrophys J Suppl Ser 55:465–506

    Google Scholar 

  • Zahnle K, Marley MS, Freedman RS, Lodders K, Fortney J (2009) ApJ 701:L20

    Google Scholar 

  • Zsom A, Seager S, de Wit J, Stamenkovic V (2013) Astrophys J 778:109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyu Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, R. (2015). Photochemistry of Terrestrial Exoplanet Atmospheres. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_12

Download citation

Publish with us

Policies and ethics