Skip to main content

Color Quantization with Magnitude Sensitive Competitive Learning Algorithm

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XVII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 8790))

Abstract

In this paper we introduce a competitive neural model called Magnitude Sensitive Competitive Learning (MSCL) for Color-Quantization. The aim is to obtain a codification of the color palette taking into account some specific regions of interest in the image, such as salient area, center of the image, etc. MSCL algorithm allows distributing color vector prototypes in the desired data regions according to a magnitude function. This magnitude function can allocate the codewords (colors of the palette) not only in relation to their frequency but also in response to any other data-dependent magnitude tailored to the specific goal. As we show in five different examples in this paper, MSCL is able to surpass the performance of other standard Color Quantization algorithms.

This work is partially supported by Spanish Grant TIN2010-20177 (MICINN) and FEDER and by the regional government DGA-FSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahalt, S., Krishnamurthy, A., Chen, P., Melton, D.: Competitive learning algorithms for vector quantization. Neural Netw. 3(3), 277–290 (1990)

    Article  Google Scholar 

  2. Atsalakis, A., Papamarkos, N.: Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas. Eng. Appl. Artif. Intell. 19(7), 769–786 (2006)

    Article  Google Scholar 

  3. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  4. Celebi, M.: An effective color quantization method based on the competitive learning paradigm. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV, vol. 2, pp. 876–880 (2009)

    Google Scholar 

  5. Celebi, M.: Improving the performance of k-means for color quantization. Image Vision Comput. 29(4), 260–271 (2011). (Rochester, N.Y.)

    Article  MathSciNet  Google Scholar 

  6. Celebi, M., Schaefer, G.: Neural gas clustering for color reduction. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV, vol. 1, pp. 429–432 (2010)

    Google Scholar 

  7. Chang, C., Xu, P., Xiao, R.: New adaptive color quantization method based on self-organizing maps. IEEE Neural Netw. 16(1), 237–249 (2005)

    Article  Google Scholar 

  8. Cheng, G., Yang, J., Wang, K., Wang, X.: Image color reduction based on self-organizing maps and growing self-organizing neural networks. In: 2006 Sixth International Conference on on Hybrid Intelligent Systems (HIS’06) (40572082), 24 Dec 2006 (2006)

    Google Scholar 

  9. Dekker, A.: Kohonen neural networks for optimal colour quantization. Netw. Comput. Neural Syst. 3(5), 351–367 (1994)

    Article  Google Scholar 

  10. Itti, L., Koch, C.: Computational modeling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)

    Article  Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  12. Lazaro, J., Arias, J., Martin, J., Zuloaga, A., Cuadrado, C.: SOM segmentation of gray scale images for optical recognition. Pattern Recogn. Lett. 27(16), 1991–1997 (2006)

    Article  Google Scholar 

  13. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Martinetz, T., Berkovich, S., Schulten, K.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Netw. 4(4), 558–569 (1993)

    Article  Google Scholar 

  15. Nikolaou, N., Papamarkos, N.: Color reduction for complex document images. Int. J. Imaging Syst. Technol. 19(1), 14–26 (2009)

    Article  Google Scholar 

  16. Papamarkos, N.: A neuro-fuzzy technique for document binarisation. Neural Comput. Appl. 12(3–4), 190–199 (2003)

    Article  Google Scholar 

  17. Pelayo, E., Buldain, D., Orrite, C.: Focused image color quantization using magnitude sensitive competitive learning algorithm. In: IJCCI, pp. 516–521 (2012)

    Google Scholar 

  18. Pelayo, E., Buldain, D., Orrite, C.: Magnitude sensitive competitive learning. In: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. vol. 1, pp. 305–310 (2012)

    Google Scholar 

  19. Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  20. Uchiyama, T., Arbib, M.: Color image segmentation using competitive learning. IEEE Trans. Pattern Anal. Mach. Intell. 16(12), 1197–1206 (1994)

    Article  Google Scholar 

  21. Vazquez, E., Gevers, T., Lucassen, M., van de Weijer, J., Baldrich, R.: Saliency of color image derivatives: a comparison between computational models and human perception. J. Opt. Soc. Am. A: Opt. Image Sci. Vision 27(3), 21–613 (2010)

    Article  Google Scholar 

  22. Xu, L., Krzyzak, A., Oja, E.: Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Trans Neural Netw. 4, 636–649 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Pelayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelayo, E., Buldain, D., Orrite, C. (2014). Color Quantization with Magnitude Sensitive Competitive Learning Algorithm. In: Nguyen, N., Kowalczyk, R., Fred, A., Joaquim, F. (eds) Transactions on Computational Collective Intelligence XVII. Lecture Notes in Computer Science(), vol 8790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44994-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44994-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44993-6

  • Online ISBN: 978-3-662-44994-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics