Skip to main content

Real-Time Lattice Boltzmann Shallow Waters Method for Breaking Wave Simulations

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics -- Theory and Applications (VISIGRAPP 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 458))

  • 831 Accesses

Abstract

We present a new approach for the simulation of surface-based fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tessendorf, J.: Simulating ocean water. In: SIGGRAPH Course Notes (1999)

    Google Scholar 

  2. Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: SCA, pp. 161–166 (2002)

    Google Scholar 

  3. Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. In: SIGGRAPH, pp. 49–57 (1990)

    Google Scholar 

  4. O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of splashing fluids. In: Proceedings of the Computer Animation, CA ’95, pp. 198–205 (1995)

    Google Scholar 

  5. Št’ava, O., Beneš, B., Brisbin, M., Křivánek, J.: Interactive terrain modeling using hydraulic erosion. In: SCA, pp. 201–210 (2008)

    Google Scholar 

  6. Yuksel, C., House, D.H., Keyser, J.: Wave particles. ACM Trans. Graph. 26, 99 (2007)

    Article  Google Scholar 

  7. Layton, A.T., van de Panne, M.: A numerically efficient and stable algorithm for animating water waves. Vis. Comput. 18, 41–53 (2002)

    Article  MATH  Google Scholar 

  8. Thürey, N., Müller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: 15th Pacific Conference on Computer Graphics and Applications, pp. 39–46 (2007)

    Google Scholar 

  9. Chentanez, N., Müller, M.: Real-time simulation of large bodies of water with small scale details. In: SCA, pp. 197–206 (2010)

    Google Scholar 

  10. Cords, H.: Mode-splitting for highly detailed, interactive liquid simulation. In: GRAPHITE, pp. 265–272 (2007)

    Google Scholar 

  11. Lee, H., Han, S.: Solving the shallow water equations using 2d sph particles for interactive applications. Vis. Comput. 26, 865–872 (2010)

    Article  Google Scholar 

  12. Solenthaler, B., Bucher, P., Chentanez, N., Müller, M., Gross, M.: SPH based shallow water simulation. In: VRIPHYS, pp. 39–46 (2011)

    Google Scholar 

  13. Salmon, R.: The lattice boltzmann method as a basis for ocean circulation modeling. J. Mar. Res. 57, 503–535 (1999)

    Article  Google Scholar 

  14. Thürey, N.: Physically based animation of free surface flows with the lattice boltzmann method. Ph.D. thesis, Dept. of Computer Science 10, University of Erlangen-Nuremberg (2007)

    Google Scholar 

  15. Thömmes, G., Seaïd, M., Banda, M.K.: Lattice boltzmann methods for shallow water flow applications. Int. J. Numer. Meth. Fluids 55, 673–692 (2007)

    Article  MATH  Google Scholar 

  16. Zhou, J.G.: Enhancement of the labswe for shallow water flows. J. Comput. Phys. 230, 394–401 (2011)

    Article  MATH  Google Scholar 

  17. Wei, X., Li, W., Mueller, K., Kaufman, A.: The lattice-boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 10, 164–176 (2004)

    Article  Google Scholar 

  18. Tölke, J.: Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nvidia. Comput. Vis. Sci. 13, 29–39 (2010)

    Article  Google Scholar 

  19. Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.J.: A new approach to the lattice boltzmann method for graphics processing units. Comput. Math. Appl. 61, 3628–3638 (2011)

    Article  MATH  Google Scholar 

  20. Bailey, P., Myre, J., Walsh, S., Lilja, D., Saar, M.: Accelerating lattice boltzmann fluid flow simulations using graphics processors. In: International Conference on Parallel Processing, pp. 550–557 (2009)

    Google Scholar 

  21. Geveler, M., Ribbrock, D., Göddeke, D., Turek, S.: Lattice-Boltzmann simulation of the Shallow-Water equations with fluid-structure interaction on multi- and manycore processors. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-Challenge. LNCS, vol. 6310, pp. 92–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters) 17, 479 (1992)

    Article  MATH  Google Scholar 

  23. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, New York (2004)

    Book  MATH  Google Scholar 

  24. Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice boltzmann subgrid model for high reynolds number flows. Fields Inst. Commun. 6, 151–166 (1996)

    MathSciNet  Google Scholar 

  25. He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  26. Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.: Interactive SPH simulation and rendering on the GPU. In: SCA, pp. 55–64 (2010)

    Google Scholar 

Download references

Acknowledgements

With the support of the Research Project TIN2010-20590-C02-01 of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Ojeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ojeda, J., Susín, A. (2014). Real-Time Lattice Boltzmann Shallow Waters Method for Breaking Wave Simulations. In: Battiato, S., Coquillart, S., Laramee, R., Kerren, A., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics -- Theory and Applications. VISIGRAPP 2013. Communications in Computer and Information Science, vol 458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44911-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44911-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44910-3

  • Online ISBN: 978-3-662-44911-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics