Skip to main content

Energy Harvesting from Pavements

  • Chapter
  • First Online:
Climate Change, Energy, Sustainability and Pavements

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Against a background of the immense solar radiation incident with available pavement surfaces, the opportunity for energy to be harvested from pavements is investigated. While the emphasis is on the harvesting of solar-derived heat energy, some attention is also paid to the collection of energy derived from displacement of the pavement by traffic and to solar energy converted directly to electricity via photovoltaic systems embedded in pavements. Basic theory of heat collection is covered along with a discussion of the relevant thermal properties of pavement materials that affect heat transmission and storage in a pavement. Available technologies for pavement energy harvesting are reviewed and some of their advantages and limitations reviewed. The chapter continues with some descriptions of the ways in which the harvested energy can be stored and then used before ending with sections on evaporative cooling of pavements and system evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari, H. (1995). Cooling our communities: An overview of heat island project activities. Annual report. Berkeley: Heat Island Group, Lawrence Berkeley National Laboratory.

    Google Scholar 

  • Akbari, H. (2005). Energy saving potentials and air quality benefits of urban heat Island mitigation. Report LBNL-58285. Lawrence Berkeley National Laboratory.

    Google Scholar 

  • Armstrong, F., & Blundell, K. (2007). Energy…beyond oil. Oxford: Oxford University Press.

    Google Scholar 

  • Athienitis, A. K., Liu, C., Hawes, D., Banu, D., & Feldman, D. (1997). Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment, 32(5), 405–410.

    Article  Google Scholar 

  • Banks, D. (2008). An introduction to thermogeology: Ground source heating and cooling. Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Bentz, D. P., & Turpin, R. (2007). Potential applications of phase change materials in concrete technology. Cement and Concrete Composites, 29(7), 527–532.

    Article  Google Scholar 

  • Bo, G., Biao, M., & Fang, Q. (2011). Application of asphalt pavement with phase change materials to mitigate urban heat Island effect. In Proceedings of International Symposium on Water Resource and Environmental Protection (ISWREP), May, Xian, Shaanxi, China.

    Google Scholar 

  • Botts, M., & Mouw, I. (2013). Here comes the sun (pp. 19–21). Fredericksburg: International Parking Institute.

    Google Scholar 

  • Busby, J., Lewis, M., Reeves, H., & Lawley, R. (2009). Initial geological consideration before installing ground source heat pump systems. Journal of Engineering Geology and Hydrogeology, 42, 295–306.

    Article  Google Scholar 

  • Cambridge Systematics. (2005). Cool pavement report, EPA cool pavements study—task 5. http://www.epa.gov/heatisland/resources/pdf/CoolPavementReport_Former%20Guide_complete.pdf.

  • Carder, D. R., Barker K. J., Hewitt, M. G., Ritter, D., & Kiff, A. (2007). Performance of an interseasonal heat transfer facility for collection, storage, and re-use of solar heat from the road surface. Crowthorne: Transport Research Laboratory, Published Project Report PPR 302.

    Google Scholar 

  • CĂ´tĂ©, J., & Konrad, J. M. (2005). Thermal conductivity of base-course materials. Canadian Geotechnical Journal, 42(1), 61–78.

    Article  Google Scholar 

  • Dawson, A. R., Keikhaei Dehdezi, P., Hall, M. R., Wang, J., & Isola, R. (2012). Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design, 13(4), 784–803.

    Google Scholar 

  • de Bondt, A. (2003). Generation of Energy via Asphalt Pavement Surfaces. Asphaltica Padova 2003.

    Google Scholar 

  • de Wild-Scholten, M. J. (2013). Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Materials and Solar Cells, 119, 296–305.

    Google Scholar 

  • Duarte, F., Casimiro, F., Correia, D., Mendes, R., & Ferreira, A. (2013). Waynergy people: A new pavement energy harvest system. Municipal Engineer, Institute of Civil Engineers, 166(4), 250–256.

    Google Scholar 

  • Entrop, A. G., Brouwers, H. J. H., & Reinders, A. H. M. E. (2011). Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Solar Energy, 85(5), 1007–1020.

    Article  Google Scholar 

  • Ewing, R. P., & Horton, R. (2007). Thermal conductivity of a cubic lattice of spheres with capillary bridges. Journal of Physics D: Applied Physics, 40(16), 4959–4965.

    Google Scholar 

  • Garcia, A., & Partl, M. N. (2014) How to transform an asphalt concrete pavement into a solar turbine. Applied Energy, 119(C), 431–437.

    Google Scholar 

  • Hall, M. R., Keikhaei Dehdezi, P., Dawson, A. R., Grenfell, J., & Isola, R. (2012). Influence of the thermo-physical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Engineering, 24(1), 32–47.

    Article  Google Scholar 

  • Hasebe, M., Kamikawa, Y., & Meiarashi, S. (2006). Thermoelectric generators using solar thermal energy in heated road pavement. In 25th International Conference on Thermoelectrics.

    Google Scholar 

  • Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., & Founti, M. (2009). The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10), 731–743.

    Article  Google Scholar 

  • Inhabit. (2013). http://inhabitat.com/students-install-the-worlds-first-solar-pavement-panels-in-virginia/solar-walk-up-jmc-2013-9954-460x260/.

  • James, W. (2002). Green roads: research into permeable pavers. Stormwater, 3(2), 40–48.

    Google Scholar 

  • Keikhaei Dehdezi, P., Hall, M. R., & Dawson, A. R. (2011). Thermo-physical optimisation of specialised concrete pavement materials for surface heat energy collection and shallow heat storage applications. Transportation Research Record (Journal of the Transportation Research Board), 2240, 96–106.

    Article  Google Scholar 

  • Keikhaei Dehdezi, P. (2012). Enhancing pavements for thermal applications. PhD thesis, Department of Civil Engineering, University of Nottingham, p. 225.

    Google Scholar 

  • Keikhaei Dehdezi, P., Dawson, A. R., Hall, M. R., & Casey, S. (2012a). Investigate the feasibility of using asphalt pavements as a source of heating. 2nd International Symposium on Asphalt Pavements & Environment, 1st–3rd October, Fortaleza, Brazil.

    Google Scholar 

  • Keikhaei Dehdezi, P., Hall, M. R., & Dawson, A. R. (2012b). Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications. Applied Mechanics and Materials, 110–116, 1191–1198.

    Google Scholar 

  • Keikhaei Dehdezi, P., Hall, M. R., Dawson, A. R., & Casey, S. (2012c). Thermal, mechanical, and microstructural analysis of concrete containing microencapsulated phase change materials. International Journal of Pavement Engineering, 14(5), 1–14.

    Google Scholar 

  • Leong, W. H., Tarnawski, V. R., & Aittomäki, A. (1998). Effect of soil type and moisture content on ground heat pump performance: Effet du type et de l’humiditĂ© du sol sur la performance des pompes Ă  chaleur Ă  capteurs enterrĂ©s. International Journal of Refrigeration, 21(8), 595–606.

    Article  Google Scholar 

  • Lopes-Ferreira, A. J. (2012). Recent developments in pavement energy harvest systems. Municipal Engineer, Institution of Civil Engineers, 165(4), 189–192.

    Article  Google Scholar 

  • Lund, J. (2002). Pavement Snow Melting. Geo-Heat Center, Oregon Institute of Technology, Klamath Falls. http://geoheat.oit.edu/bulletin/bull21-2/art4.pdf.

  • Ma, B., Wang, S., & Li, J. (2010). Study on application of PCM in Asphalt mixture. Journal of Advanced Materials Research, 168–170, 2625–2630.

    Article  Google Scholar 

  • Mallick, R. B., Chen, B.-L., & Bhowmick, S. (2009). Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214–228.

    Article  Google Scholar 

  • Mallick, R., Carelli, J., Albano, L., Bhowmick, S., & Veeraragavan, A. (2011). Evaluation of the potential of harvesting heat energy from asphalt pavements. International Journal of Sustainable Engineering, 4(02), 164–171.

    Article  Google Scholar 

  • Mallick, R., & Bhowmick, S. (2013). Rise in pavement temperature—Making buildings part of the road infrastructure, capturing energy—Solutions, possibilities and challenges. Sustain, 29, 36–46.

    Google Scholar 

  • McGlen, R., Kew, P., & Rea, D. (2006). Heat pipes: Theory, design and applications (p. 384). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. Berlin: Springer.

    Google Scholar 

  • NASA. (2014). http://science.larc.nasa.gov/erbe.

  • OKState. (2002). Geothermal Smart Bridge, What’s New. http://www.smartbridge.okstate.edu/whatsnew.html.

  • Park, D.-W., Dessouky, S., & Hwang, S.-D. (2014). Thermophysical properties of graphite-modified asphalt mixture and numerical analyses for snow melting pavement. In M. Losa & T. Papagiannakis (eds.) Chapter 10, Sustainability, eco-efficiency, and conservation in transportation infrastructure asset management (pp. 87–94). Boca Raton: CRC Press.

    Google Scholar 

  • Pavegen. (2012). Generating Energy from Footsteps. Pavegen Systems Ltd, UK. http://www.pavegen.com.

  • Read, J., & Whiteoak, D. (2003). The shell bitumen handbook. London: Thomas Telford Publishing.

    Google Scholar 

  • Rosenfeld, A. H., Romm, J. J., Akbari, H., Pomerantz, M., Taha, H. (1996). Policies to reduce heat islands: magnitudes of benefits and incentives to achieve them. Proceedings of 1996 LBL-38679, ACEEE summer study on energy efficiency in buildings (Vol. 9, pp. 177–186).

    Google Scholar 

  • Russell, R. (2007). Solar Energy in Earth’s Atmosphere. http://www.windows2universe.org/earth/Atmosphere/earth_atmosph_radiation_budget.html.

  • Sundberg, J. (1988). Thermal properties of soil and rocks. Linkoping: Swedish Geotechnical Institute.

    Google Scholar 

  • Tarnawski, R., Momose, T., & Leong, W. H. (2009). Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique, 59(4), 331–338.

    Article  Google Scholar 

  • Sánchez, P., Sánchez-Fernandez, M. V., Romero, A., RodrĂ­guez, J. F., & Sánchez-Silva, L. (2010). Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochimica Acta, 498(1–2), 16–21.

    Article  Google Scholar 

  • Sedgwick, R. H. D., & Patrick, M. A. (1981). The use of a ground solar collector for swimming pool heating. Paper to 1st Solar World Forum, Brighton, England. Proceedings of International Solar Energy Society, 1, 632–636.

    Google Scholar 

  • Sullivan, C., de Bondt, A. H., Jansen, R., & Verweijmeren, H. (2007). Innovation in the production and commercial use of energy extracted from asphalt pavements. 6th Annual International Conference on Sustainable Aggregates, International Journal of Pavement Engineering and Asphalt Technology, 8(2). Liverpool.

    Google Scholar 

  • Takebayashi, H., & Moriyama, M. (2012). Study on surface heat budget of various pavements for urban heat island mitigation. Advances in Materials Science and Engineering, 2012 (523051), 11.

    Google Scholar 

  • Waydip. (2012). Waynergy. Waydip—Energia e Ambiente, Lda, Portugal. http://www.waydip.com.

  • Wong, N. H., & Chen, Y. (2009). Tropical Urban Heat Islands. Abingdon: Taylor & Francis.

    Google Scholar 

  • Wu, S., Chen, M., & Zhang, J. (2011). Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs. Applied Thermal Engineering, 31(10), 1582–1587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dawson .

Editor information

Editors and Affiliations

18.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSM 6680 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, A., Mallick, R., Hernandez, A.G., Dehdezi, P.K. (2014). Energy Harvesting from Pavements. In: Gopalakrishnan, K., Steyn, W., Harvey, J. (eds) Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44719-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44719-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44718-5

  • Online ISBN: 978-3-662-44719-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics