Skip to main content

Reclaimed Waste Materials in Sustainable Pavement Construction

  • Chapter
  • First Online:
Climate Change, Energy, Sustainability and Pavements

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter provides an in-depth but brief overview on the possible use of various waste materials for sustainable pavement construction. It compiles a literature review on the research done on such materials and highlights the current issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airey, G. D., Singleton, T. M., & Collop, A. C. (2002). Properties of polymer modified bitumen after rubber-bitumen interaction. Journal of Materials in Civil Engineering, 14, 244–354.

    Article  Google Scholar 

  • Akbulut, H., & Gurer, C. (2007). Use of aggregates produced from marble quarry waste in asphalt pavements. Building and Environment, 42(5), 1921–1930.

    Article  Google Scholar 

  • Ahmed, I. (1991). Use of waste materials in highway construction. Final Report, Department of Civil Engineering, Purdue University, FHWA/IN/JHRP-91/03.

    Google Scholar 

  • Al-Qadi, I., Elseifi, M., & Carpenter, S. H. (2007). Reclaimed asphalt pavement—a literature review, Research Report FHWA-ICT-07-001.

    Google Scholar 

  • Ali, N., Chan, J. S., Simms, S., et al. (1996). Mechanistic evaluation of fly ash asphalt concrete mixtures. Journal of Materials in Civil Engineering, 8(1), 19–25.

    Article  Google Scholar 

  • Anh Tuan, B., Tesfamariam, M.G., Chen, Y., Hwang, C., Lin, K., & Young, M. (2014). Production of lightweight aggregate from sewage sludge and reservoir sediment for high-flowing concrete. Journal of Construction Engineering and Management, 140(5), 04014005.

    Google Scholar 

  • Apul, D. S. (2004). Contributions to predicting contaminant leaching from secondary materials used in roads. Ph.D. thesis, Department of Civil Engineering, University of New Hampshire.

    Google Scholar 

  • Arabani, M., Nejad, F. M., & Azarhoosh, A. R. (2013). Laboratory evaluation of recycled waste concrete into asphalt mixtures. International Journal of Pavement Engineering, 14(6), 531–539.

    Article  Google Scholar 

  • Aravind, K., & Das, A. (2004). Industrial waste in highway construction. http://home.iitk.ac.in/~adas/article07.pdf.

  • Aravind, K., & Das, A. (2007a). Pavement design with central plant hot-mix recycled asphalt mixes. Construction and Building Materials, 21(5), 928–936.

    Article  Google Scholar 

  • Aravind, K., & Das, A. (2007b). Preliminary constituent proportioning for central plant hotmix asphalt. Journal of Materials in Civil Engineering, 19(9), 740–745.

    Article  Google Scholar 

  • Arias, M., Nuñez, A., Barral, M. T., et al. (1998). Pollution potential of copper mine spoil used for road making. The Science of the Total Environment, 221, 111–116.

    Article  Google Scholar 

  • Arnold, G., Werkemeister, S., & Alabaster, D. (2008). The effect of adding recycled glass on the performance of base-course aggregate. NZ Transport Agency Research Report, p. 351.

    Google Scholar 

  • Arora, S., & Adydilek, A. H., (2005). Class F fly-ash-amended soils as highway base Materials. Journal of Materials in Civil Engineering, 17(6), 640–649.

    Google Scholar 

  • Arulrajah, A., Piratheepan, J., & Disfani, M. M. (2014). Reclaimed asphalt pavement and recycled concrete aggregate blends in pavement subbases: Laboratory and field evaluation. Journal of Materials in Civil Engineering, 26(2), 349–357.

    Article  Google Scholar 

  • Ashmawy, A., McDonald, R., & Carreon, D. et al. (2006). Stabilization of marginal soils using recycled materials. Final Report, Florida Department of Transportation, Report # BD-544-4.

    Google Scholar 

  • Arulrajah, A., Ali, Y. M. M., Piratheepan, J., et al. (2012a). Geotechnical properties of waste excavation rock in pavement sub-base applications. Journal of Materials in Civil Engineering ASCE, 24(7), 924–932.

    Article  Google Scholar 

  • Arulrajah, A., Piratheepan, J., Bo, M. W., et al. (2012b). Geotechnical characteristics of recycled crushed brick blends for pavement sub-base applications. Canadian Geotechnical Journal, 49(7), 796–811.

    Article  Google Scholar 

  • Bagampadde, U., Wahhab, H. I. A.-A., & Aiban, S. A. (1999). Optimization of steel slag aggregates for bituminous mixes in Saudi Arab. Journal of Materials in Civil Engineering, 11(1), 30–35.

    Article  Google Scholar 

  • Bagchi, A., & Sopcich, D. (1989). Characterization of MSW incinerator ash. Journal of Environmental Engineering, 115(2), 447–452.

    Article  Google Scholar 

  • Barry, K., Daniel, J. S., Foxlow, J., et al. (2013). An evaluation of reclaimed asphalt shingles in hot mix asphalt by varying sources and quantity of reclaimed asphalt shingles. Road Materials and Pavement Design, 15(2), 259–271.

    Google Scholar 

  • Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 9(6), 448–453.

    Article  Google Scholar 

  • Behl, A., Sharma, G., & Kumar, G. (2014). A sustainable approach: Utilization of waste PVC in asphalting of roads. Construction and Building Materials, 54, 113–117.

    Article  Google Scholar 

  • Berndt, M. L. (2009). Properties of sustainable concrete containing fly ash slag and recycled concrete aggregate. Construction and Building Materials, 23, 2606–2613.

    Article  Google Scholar 

  • Bloomquist, D., Diamond, G., & Oden, M. et al. (1993). Engineering and environmental aspects of recycled materials for highway construction. FHWA-RD-93-088, Western Research Institute, Laramie.

    Google Scholar 

  • Buncher, M. S. (1995). Evaluation the effects of the wet and dry processes for including crumb rubber modifier in hot mix asphalt. Ph.D. Dissertation, Department of Civil Engineering, Auburn University.

    Google Scholar 

  • CEMP-ET Engineer Technical Manual. (1999). Use of waste materials in pavement construction. No. ETL 1110-3-503, Department of the Army, U.S. Army Corps of Engineers, Washington, D.C.

    Google Scholar 

  • Chandra, S., & Choudhary, R. (2013). Performance characteristics of bituminous concrete with industrial wastes as filler. Journal of Materials in Civil Engineering, 25(11), 1666–1673.

    Article  Google Scholar 

  • Chen, J., Chu, P., Chang, J., et al. (2008). Engineering and environmental characterization of municipal solid waste bottom ash as an aggregate substitute utilized for asphalt concrete. Journal of Materials in Civil Engineering, 20(6), 432–439.

    Article  Google Scholar 

  • Chen, M., Lin, J., Wu, S., et al. (2011). Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 25(4), 1532–1536.

    Article  Google Scholar 

  • Chen, L., & Lin, D. F. (2009). Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. Journal of Hazard Materials, 162(1), 321–327.

    Article  Google Scholar 

  • Chimenos, J. M., Segarra, M., Fernandez, M. A., et al. (1999). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64, 211–222.

    Article  Google Scholar 

  • Colbert, B. W., Diab, A., & You, Z. (2013). Using M-E PDG to study the effectiveness of electronic waste materials modification on asphalt pavements design thickness. International Journal of Pavement Research and Technology, 6(4), 319–326.

    Google Scholar 

  • Dam, T. V., Taylor, P., & Fick, G. et al. (2012). Sustainable concrete pavements: A manual of practice. Institute for Transportation, Iowa State University.

    Google Scholar 

  • Dawson, A. R., & Bullen, F. (1991). Furnace bottom ash: Its engineering properties and its use as sub-base material. Proceedings of Institute of Civil Engineers, Part, 1(90), 993–1009.

    Article  Google Scholar 

  • Dawson, A. R., Elliot, R. C., & Rowe, G. M. et al. (1995). Assessment of suitability of some industrial by-products for use in pavement bases in the United Kingdom. Transportation Research Record, 1486, TRB, National Research Council, TRB, pp. 114–123.

    Google Scholar 

  • de Figueirêdo Lopes Lucena, L. C., Thomé Juca, J. F., & Soares, J. B. et al. (2013). Potential uses of sewage sludge in highway construction. Journal of Materials in Civil Engineering, 26(9), 04014051.

    Google Scholar 

  • Debieb, F., & Kenai, S. (2009). The use of coarse and coarse and fine crushed bricks as aggregate in concrete. Construction and Building Materials, 22(5), 886–893.

    Article  Google Scholar 

  • Department for Environment, Food and Rural Affairs (DEFRA). (2013a). Retrieved January 31, 2013, from http://archive.defra.gov.uk/evidence/statistics/environment/waste/kf/wrkf09.htm.

  • Department for Environment, Food and Rural Affairs (DEFRA). (2013b). Retrieved January 31, 2013, from http://www.defra.gov.uk/statistics/environment/waste/wrfg09-condem/.

  • Do, S. H., Mum, P. H., & Keun, R. S. (2008). A study on engineering characteristics of asphalt concrete using filler with recycled waste lime. Waste Management, 28, 191–199.

    Article  Google Scholar 

  • Ebrahimi, A., Kootstra, B. R., Edil, T. B., et al. (2012). Practical approach for designing flexible pavements using recycled roadway materials as base course. Road Materials and Pavement Design, 13(4), 731–748.

    Article  Google Scholar 

  • Eighmy, T. T., Crimi, D., & Zhang, X. et al. (1995). Influence of void change, cracking, and bitumen aging on diffusional leaching behavior of pavement monoliths constructed with MSW combustion bottom ash. Transportation Research Record, 1486, TRB, National Research Council, Washington, D. C., pp. 42–48.

    Google Scholar 

  • Eldin, N. N. (2002). Road construction: Materials and methods. Journal of Environmental Engineering, 128(5), 423–430.

    Article  Google Scholar 

  • Engstrom, G. M., & Lamb, R. (1994). Using shredded waste tires as lightweight fill material for road subgrades. Report # MN/RD–94/10, Minnesota Department of Transportation.

    Google Scholar 

  • Evangelistaa, L., & de Britob, J. (2013). Concrete with fine recycled aggregates: A review. European Journal of Environmental and Civil Engineering, 18(2), 129–172.

    Google Scholar 

  • Etxeberria, M., Pacheco, C., Meneses, J. M., et al. (2010). Properties of concrete using metallurgical industrial by-products as aggregates. Construction and Building Materials, 24(9), 1594–1600.

    Article  Google Scholar 

  • Federal Highway Administration (FHWA). (2013). User guidelines for waste and byproduct materials in pavement construction. Retrieved January 15, 2013, from http://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cbabs1.cfm.

  • Feng, D., Yi, J., & Wang, D. (2013). Performance and thermal evaluation of incorporating waste ceramic aggregates in wearing layer of asphalt pavement. Journal of Materials in Civil Engineering, 25(7), 857–863.

    Article  Google Scholar 

  • Ferrari, G., Miyamoto, M., & Ferrari, A. (2014). New sustainable technology for recycling returned concrete. Construction and Building Materials, 67(part C), 363–359.

    Google Scholar 

  • Fini, E., Kalberer, E., Shahbazi, A., et al. (2011). Chemical characterization of biobinder from swine manure: Sustainable modifier for asphalt binder. Journal of Materials in Civil Engineering, 23, 1506–1513.

    Article  Google Scholar 

  • Flyhammara, P., & Bendz, D. (2006). Leaching of different elements from subbase layers of alternative aggregates in pavement constructions. Journal of Hazardous Materials, 137(1), 603–611.

    Article  Google Scholar 

  • Fontes, L. P. T. L., Trichês, G., Pais, J. C., & Pereira, P. A. A. (2010). Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, 24(7), 1193–1200.

    Article  Google Scholar 

  • Forteza, R., Far, M., Seguı́, C., et al. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24(9), 899–909.

    Article  Google Scholar 

  • Foxlow, J. J., Daniel, J. S., & Swamy, A. K. (2011). RAP or RAS? The differences in performance of HMA containing reclaimed asphalt pavement and reclaimed asphalt shingles. Journal of the Association of Asphalt Paving Technologists, 80, 347–376.

    Google Scholar 

  • Gabr, A., & Cameron, D. (2012). Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24(6), 754–776.

    Article  Google Scholar 

  • Garrick, N. W., & Chan, K. L. (1993). Evaluation of domestic incineration ash for use as aggregate in asphalt concrete. Transportation Research Record, 1418, TRB, National Research Council, Washington D. C., pp. 30–34.

    Google Scholar 

  • Goh, C. C., Show, K. Y., & Cheong, H. K. (2003). Municipal solid waste fly ash as a blended cement material. Journal of Materials in Civil Engineering, 15(6), 513–523.

    Google Scholar 

  • González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume materials and mechanical properties. Building and Environment, 43(4), 429–437.

    Article  Google Scholar 

  • Gress, D., Zhang, X., & Tarr, S. et al. (1992). Physical and environmental properties of asphalt-amended bottom ash. Transportation Research Record, No. 1345, TRB, National Research Council, pp. 10–18.

    Google Scholar 

  • Griffiths, C. T., & Krstulovich, J. M. Jr. (2002). Utilization of Recycled Materials in Illinois Highway Construction. Physical Research Report No. 142, Illinois Department of Transportation.

    Google Scholar 

  • Guney, Y., Aydilek, A. H., & Demirkan, M. M. (2006). Geoenvironmental behavior of foundry sand amended mixtures for highway subbases. Waste Management, 26(9), 932–945.

    Article  Google Scholar 

  • Guo, X., & Shi, H. (2013). Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement based materials. Journal of Materials in Civil Engineering, 25(12), 1990–1993.

    Article  Google Scholar 

  • Hamad, B. S., Rteil, A. A., & El-Fadel, M. (2003). Effect of used engine oil on properties of fresh and hardened concrete. Construction and Building Materials, 17, 311–318.

    Article  Google Scholar 

  • Han, C. (1993). Waste products in highway construction. Final Report, Minnesota Local Road Research Board

    Google Scholar 

  • Hansen, T. C. (1992). Recycling of demolished concrete and masonry. RIELM Report No. 6, E&FN Spon, UK.

    Google Scholar 

  • Hassan, H. F. (2005). Recycling of municipal solid waste incinerator ash in hot-mix asphalt concrete. Construction and Building Materials, 19(2), 91–98.

    Article  Google Scholar 

  • Havanagi, V. G., Mathur, S., & Prasad, P. S. et al. (2007). Feasibility of copper slag-fly ash-soil mix as a road construction material. Transportation Research Record, 1989(2), TRB, National Research Council, pp. 13–20.

    Google Scholar 

  • Henry, K. S., & Morin, S. H. (1997). Frost susceptibility of crushed glass used as construction aggregate. Journal of Cold Regions Engineering, 11(4), 326–333.

    Article  Google Scholar 

  • Hill, A. R., Dawson, A. R., & Mundy, M. (2001). Utilization of aggregate materials in road construction and bulk fill. Resources, Conservation & Recycling, 32, 305–320.

    Article  Google Scholar 

  • Hill, A. R. (2004). Leaching of alternative pavement materials. Ph.D. thesis submitted to School of Civil Engineering, University of Nottingham. Retrieved June 15, 2013, from http://www.nottingham.ac.uk/~evzncpe/Theses/HillPhDthesis.pdf.

  • Huang, Y., Bird, R. N., & Heidrich, O. (2007a). A review of the use of recycled solid waste materials in asphalt pavements. Resources. Conservation and Recycling, 52, 58–73

    Google Scholar 

  • Huang, B., Mohammad, L. N., Graves, P. S., & Abadie, C. (2007b). Louisiana experience with crumb rubber-modified hot-mix asphalt pavement. Transportation Research Record, 1789, TRB, National Research Council, Washington, D.C., pp. 1–13.

    Google Scholar 

  • Huang, B., Dong, Q., & Burdette, E. G. (2009). Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete. Construction and Building Materials, 29(12), 3451–3456.

    Article  Google Scholar 

  • Huang, B., Shu, X., & Li, G. (2005). Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cement and Concrete Research, 35, 2008–2013.

    Article  Google Scholar 

  • Humphrey, D. N., & Katz, L. E. (2000). Water-quality effects of tire shreds placed above the water table. Transportation Research Record, 1714, TRB, National Research Council, Washington, D.C., pp. 18–24.

    Google Scholar 

  • Hunt, L., & Boyle, G. E. (2000). Steel slags in hot mix asphalt concrete. Final Report, State Research Project, Salem, Oregon

    Google Scholar 

  • Irfan, M., Khurshid, M. B., Bai, Q., et al. (2012). Establishing optimal project-level strategies for pavement maintenance and rehabilitation—A framework and case study. Engineering Optimization, 44(5), 565–589.

    Article  Google Scholar 

  • Javed, S., Lovell, C. W., Wood, L. E. et al. (1994). Waste foundry sand in asphalt concrete. Transportation Research Record, 1437, TRB, National Research Council, Washington, D.C., pp. 27–34.

    Google Scholar 

  • Khaloo, A. R. (1994). Properties of concrete using crushed clinker brick as coarse aggregate. ACI Materials Journal, 91(4), 401–407.

    Google Scholar 

  • Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62.

    Article  Google Scholar 

  • Kandhal, P. S. (1992). Waste materials in hot-mix asphalt—an overview (pp. 92–106). Report: NCAT.

    Google Scholar 

  • Karaşahin, M., & Terzi, S. (2007). Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials, 21(3), 616–620.

    Article  Google Scholar 

  • Karlsson, R., & Isacsson, U. (2006). Material-related aspects of asphalt recycling—state-of-the-art. Journal of Materials in Civil Engineering, 18(1), 81–92.

    Article  Google Scholar 

  • Kim, S., Loh, S., & Zhai, H. et al. (2007). Advanced characterization of crumb rubber-modified asphalts, using protocols developed for complex binders. Transportation Research Record, No. 1767, TRB, National Research Council, Washington D.C., pp. 15–24.

    Google Scholar 

  • Kleven, J. R., Edil, T. B., & Benson, C. H. (2000) Evaluation of excess foundry system sands for use as sub base material. Transportation Research Record, No. 1714, TRB, National Research Council, Washington, D.C., pp. 40–48.

    Google Scholar 

  • Krishnaswamy, A., & Das, A. (2012). Possible use of some waste materials in road construction. Masterbuilder, October, pp. 44–48.

    Google Scholar 

  • Kumar, B. (2013). Poperties of pavement quality concrete and dry lean concrete with copper slag as fine aggregates. International Journal of Pavement Engineering, 14(8), 746–751.

    Article  Google Scholar 

  • Kütük-Sert, T., & Kütük, S. (2013). Physical and Marshall properties of borogypsum used as filler aggregate in asphalt concrete. Journal of Materials in Civil Engineering, 25(2), 266–273.

    Article  Google Scholar 

  • Larsen, D. A. (1989). Feasibility of utilizing waste glass in pavements. Connecticut Department of Transportation, Report no. 343-21-89-6.

    Google Scholar 

  • Li, Y., & Madanat, S. (2002). A steady-state solution for the optimal pavement resurfacing problem. Transportation Research Part A: Policy and Practice, 36(2), 525–535.

    Google Scholar 

  • Lind, B. B., Fällman, A. M., & Larsson, L. B. (2001). Environmental impact of ferrochrome slag in road construction. Waste Management, 21, 255–264.

    Article  Google Scholar 

  • Lindsay, B. J., & Logan, T. J. (2005). Agricultural reuse of foundry sand. Journal of Residuals Science & Technology, 2, 3–12.

    Google Scholar 

  • Liu, R. (2013). Recycled tires as coarse aggregates in concrete pavement mixtures. Report no. CDOT-2013-10, DTD Applied Research and Innovation Branch, Colorado Department of Transportation.

    Google Scholar 

  • Liu, F., Yan, Y., Li, L., Lan, C., & Chen, G. (2013). Performance of recycled plastic-based concrete. Journal of Materials in Civil Engineering,. doi:10.1061/(ASCE)MT.1943-5533.0000989.

    Google Scholar 

  • Majidzadeh, K., El-Mitiny, R. N., & Bokowski, G. (1979). Power plant bottom ash in black base and bituminous surfacing. Materials Division, USA: Federal Highway Administration.

    Google Scholar 

  • Malhotra, V. M. (2002). Sustainable development and concrete technology. Concrete International, 24(7), 35–40.

    MathSciNet  Google Scholar 

  • Mauoin, G. W. (2010). Investigation of the use of tear-off shingles in asphalt concrete. Virginia Transportation Research Council, VTRC 10-R23. Retrieved June 9, 2013, from http://www.virginiadot.org/vtrc/main/online_reports/pdf/10-r23.pdf.

  • McDaniel, R., & Anderson, R. M. (2001). Recommended use of reclaimed asphalt pavement in the Superpave mix design method: technician’s manual. NCHRP Rep. No. 452, TRB, National Research Council, Washington, D.C.

    Google Scholar 

  • McDaniel, R., Soleymani, H., & Anderson, R. M. et al. (2000). Recommended use of reclaimed asphalt pavement in the Superpave mix design method. NCHRP Web Document 30, TRB, National Research Council, Washington, D.C.

    Google Scholar 

  • Misra, A. K., Mathur, R., & Goel, P. et al. (2004). Use of phosphogypsum—An industrial by-product in stabilisation of black cotton soils. Highway Research Bulletin, 70, 65–75 (Indian Roads Congress).

    Google Scholar 

  • Meyer, C., Egosi, N., & Andela, C. (2001). Concrete with waste glass as aggregate in recycling and re-use of Glass Cullet. In R. K. Dhir, T. D. Dyer, & M. C. Limbachiya (Eds.), Proceedings of the International Symposium Concrete Technology, Unit of ASCE and University of Dundee.

    Google Scholar 

  • Miller, R. H., & Collins, R. J. (1976). Waste materials as potential replacements for highway aggregates. NCHRP Report 166, Transportation Research Board.

    Google Scholar 

  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21, 285–293.

    Article  Google Scholar 

  • Mroueh, U. M., & Wahlström, M. (2002). By products and recycled materials in earth construction in Finland – an assessment of applicability. Resources, Conservation and Recycling, 35, 117–129.

    Article  Google Scholar 

  • Mulder, E. (1996). A mixture of fly ashes as road base construction material. Waste Management, 16(1–3), 15–20.

    Article  Google Scholar 

  • Mun, K. J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construction and Building Materials, 21, 1583–1588.

    Article  Google Scholar 

  • Nelson, P. O., Huber, W. C., & Neil, N. (2000). Primer environmental impact of construction and repair materials on surface and ground waters. Final report, NCHRP REPORT 443, Transportation Research Board, National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • Oliveira, J. R. M., Silva, H. M. R. D., & Jesus, C. M. G. (2013). Pushing the asphalt recycling to the limit. International Journal of Pavement Research and Technology, 6(2), 109–116.

    Google Scholar 

  • Paranavithana, S., & Mohajerani, A. (2006). Effects of recycled concrete aggregates on properties of asphalt concrete. Resources, Conservation and Recycling, 48(1), 1–12.

    Article  Google Scholar 

  • Peploe, R., & Dawson, A. (2006). Environmental impact of industrial byproducts in road construction—A literature review. Land Transport New Zealand Research Report, 308, 38.

    Google Scholar 

  • Poon, C. S., & Chan, D. (2006). Paving blocks made with recycled concrete aggregate and crushed clay brick. Construction and Building Materials, 20(8), 569–577.

    Article  Google Scholar 

  • Punith, V. S., & Veeraragavan, A. (2011). Behavior of reclaimed polyethylene modified asphalt cement for paving purposes. Journal of Materials in Civil Engineering, 23(6), 833–845.

    Article  Google Scholar 

  • Qian, G., Bai, S., Ju, S., et al. (2013). Laboratory evaluation on recycling waste phosphorus slag as the mineral filler in hot-mix asphalt. Journal of Materials in Civil Engineering, 25(7), 846–850.

    Article  Google Scholar 

  • Roberts, F. L., Kandhal, P. S., & Brown, E. R. et al. (1989). Investigation and evaluation of ground tire rubber in hot mix asphalt. National Center for Asphalt Technology Auburn University, Alabama NCAT Report 89-03.

    Google Scholar 

  • Roth, L., & Eklund, M. (2003). Environmental evaluation of reuse of by-products as road construction materials in Sweden. Waste Management, 23, 107–116.

    Article  Google Scholar 

  • Shahu, J. T., Patel, S., & Senapati, A. (2013). Engineering properties of copper slag–fly ash–dolime mix and its utilization in the base course of flexible pavements. Journal of Materials in Civil Engineering, 25(12), 1871–1879.

    Article  Google Scholar 

  • Safiuddin, M., Alengaram, U. J., Rahman, M. M., Salam, M. A., & Jumaat, M. Z. (2013). Use of recycled concrete aggregate in concrete: A review. Journal of Civil Engineering and Management, 19(6), 796–810.

    Article  Google Scholar 

  • Schimmoller, V. E., Holtz, K., & Eighmy, T. T. et al. (2000). Recycled materials in European highway environments: Uses, technologies, and policies. Office of International Programs Office of Policy, Federal Highway Administration U.S. Department of Transportation.

    Google Scholar 

  • Sibal, A., Das, A., & Pandey, B. B. (2000). Flexural fatigue characteristics of asphalt concrete with crumb rubber. International Journal of Pavement Engineering, 1(2), 119–132.

    Article  Google Scholar 

  • Singh, G., & Siddique, R. (2012). Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS). Construction and Building Materials, 28(1), 421–426.

    Article  Google Scholar 

  • Su, N., & Chen, J. S. (2002). Engineering properties of asphalt concrete made with recycled glass. Resources, Conservation and Recycling, 35(4), 259–274.

    Article  MathSciNet  Google Scholar 

  • Shayan, A., & Xu, A. (2003). Performance and properties of structural concrete made with recycled concrete aggregates. ACI Materials Journal, 100(5), 371–380.

    Google Scholar 

  • Sherwood, P. T. (1995). Alternative materials in road construction. London: Thomas Telford.

    Google Scholar 

  • Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and portland cement concrete: An overview http://dx.doi.org/10.1016/j.conbuildmat.2013.11.027.

  • Shuler, T. S. (1976). The effects of bottom ash upon bituminous sand mixtures. Publication FHWA/IN/JHRP-76/11. Joint Highway Research Project, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana.

    Google Scholar 

  • Skumatz, L. A., & Freeman, J. (2007). What to do with these piles? Resource Recycling, 26, 35–39.

    Google Scholar 

  • Stroup-Gardiner, M. (2011). Recycling and reclamation of asphalt pavements using in-place methods—A synthesis of highway practice. NCHRP Synthesis report 421, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013a). Recycled materials and byproducts in highway applications, Vol. 1: Summary Report. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013b). Recycled materials and byproducts in highway applications, Vol. 2: Coal Combustion Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013c). Recycled materials and byproducts in highway applications, Vol. 3: Non-Coal Combustion Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013d). Recycled materials and byproducts in highway applications, Vol. 4: Mineral and Quarry Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013e). Recycled materials and byproducts in highway applications, Vol. 5: Slag Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013f). Recycled materials and byproducts in highway applications, Vol. 6: Reclaimed Asphalt Pavement, Recycled Concrete Aggregate, and Construction Demolition Waste. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013g). Recycled materials and byproducts in highway applications, Vol. 7: Scrap Tire Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Stroup-Gardiner, M., & Wattenberg-Komas, T. (2013h). Recycled materials and byproducts in highway applications, Vol. 8: Manufacturing and Construction Byproducts. A Synthesis of Highway Practice, NCHRP Synthesis 435, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Suleiman, N. (2002). A state-of-the-art review of cold in-place recycling of asphalt pavements in the northern plains region. Final Report Submitted to the North Dakota Department of Transportation, Department of Civil Engineering, University of North Dakota.

    Google Scholar 

  • Sundstrom, D. W., Klei, H. E., & Stephens, J. E. (1983). The addition of lignin from gasohol plants to asphalts. Project 80-3, Department of Civil Engineering, University of Connecticut. Retrieved December 20, 2012, from http://www.cti.uconn.edu/pdfs/jhr83-149_80-3.pdf.

  • Taha, R. (2003). Evaluation of cement kiln dust-stabilised reclaimed asphalt pavement aggregate systems in road bases. Transportation Research Record, No. 1819, Transportation Research Board, National Research Council, Washington D.C., pp. 11–17.

    Google Scholar 

  • Taha, R., Al-Rawas, A., Al-Jabri, K., et al. (2004). An overview of waste materials recycling in the Sultanate of Oman. Resources, Conservation and Recycling, 41(4), 293–306.

    Article  Google Scholar 

  • Terrel, R. L. (1980). Evaluation of wood lignin as a substitute or extender of asphalt. FHWA Report Number FHWA-RD-80-125.

    Google Scholar 

  • Thøgersen, F., Gregoire, C., Stryk, J., et al. (2013). Recycling of road materials into new unbound road layers—Main practice in selected European countries. Road Materials and Pavement Design, 14(2), 438–444.

    Article  Google Scholar 

  • Uddin, M. T., Hasnat, A., Awal, M. A., & Bosunia, S. Z. (2014). Recycling of brick aggregate concrete as coarse aggregate. Journal of Materials in Civil Engineering, doi:10.1061/(ASCE)MT.1943-5533.0001043.

  • Uzun, I., & Terzi, S. (2012). Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, 31, 284–288.

    Article  Google Scholar 

  • Vizcarra, G. O. C., Casagrand, M. D. T., & Motta, L. M. G. (2013). Applicability of municipal solid waste incineration ash on base layers of pavements. Journal of Materials in Civil Engineering, 26(6), 06014005.

    Google Scholar 

  • Wartman, J., Grubb, D., & Nasim, A. (2004). Select engineering characteristics of crushed glass. Journal of Materials in Civil Engineering, 16(6), 526–539.

    Article  Google Scholar 

  • Wen, H., Baugh, J., & Edil, T. et al. (2011). Cementitious high-carbon fly ash used to stabilize recycled pavement materials as base course. Transportation Research Record, TRB, National Research Council, Washignton, D.C., 2204, pp. 110–113.

    Google Scholar 

  • Wen, H., & Wu, M. (2011). Evaluation of high percentage recycled asphalt pavement as base materials. Final report, TNW2011-15, Submitted by Department of Civil and Environmental Engineering, University of Washington, Transportation Northwest and Washington State Department of Transportation.

    Google Scholar 

  • Wenger, M. E., & Schmidt, G. H. (1970). Anthracite refuse as an aggregate in bituminous concrete. Pennsylvania Department of Transportation, Research Project No. 70-8

    Google Scholar 

  • Wong, Y. D., Sun, D. D., & Lai, D. (2007). Value-added utilization of recycled concrete in hot-mix asphalt. Waste Management, 27(2), 294–301.

    Article  Google Scholar 

  • Wu, S., Xue, Y., & Ye, Q. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42, 2580–2585.

    Article  Google Scholar 

  • Xue, Y., Hou, H., Zhu, S., et al. (2009). Utilization of municipal waste incineration ash in stone matric asphalt mixture: Pavement performance and environmental impact. Construction and Building Materials, 23, 989–996.

    Article  Google Scholar 

  • Yoon, S., Balunaini, U., Yildirim, I., et al. (2009). Construction of an embankment with a fly and bottom ash mixture: Field performance study. Journal of Materials in Civil Engineering, 21(6), 271–278.

    Article  Google Scholar 

  • Zou, G., Xu, J., & Wu, C. (2013). Feasibility study of using quarry waste for pavement application and its optimization. International Journal of Pavement Research and Technology, 6(3), 175–183.

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to Ms. Ambika Kuity, a Ph.D. student in the Department of Civil Engineering, IIT Kanpur for her help in reformatting the paper as per Springer book format guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, A., Swamy, A.K. (2014). Reclaimed Waste Materials in Sustainable Pavement Construction. In: Gopalakrishnan, K., Steyn, W., Harvey, J. (eds) Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44719-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44719-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44718-5

  • Online ISBN: 978-3-662-44719-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics