Skip to main content

Thermodynamic Green Functions

  • Chapter
  • First Online:
Many-Body Approach to Electronic Excitations

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

  • 3402 Accesses

Abstract

The quantum-field theory is designed to deal with an infinite number of degrees of freedom. This is exactly what the description of electronic excitations in condensed matter needs, at least, together with the quantum-statistical approach. Nevertheless, we start with a single quantum particle embedded in the electron gas. Propagators of electrons and holes are studied as expectation values of pairs of field operators. They allow the introduction of Green functions. The poles in frequency domain of their Fourier transforms contain information about the electronic excitations. Because of the dependence of the grand canonical statistical operator on the Hamiltonian and the inverse temperature a generalization for complex times is possible. Then one speaks about thermodynamic or Matsubara Green functions. On the single-particle level they contain the complete information about the spectral properties mediated solely by the spectral-weight function. The successive application of the equation of motion leads to a hierarchy of equations for \(N\)-particle Green functions. In the single-particle case it is closed introducing a self-energy of an electron that accounts for the entire electron-electron interaction. It allows the formulation of an integral equation, a Dyson equation, instead of the differential equation of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Keldysh, Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1965) [Sov. Phys. JETP (English Transl.) 20, 1018–1026 (1965)]

    Google Scholar 

  2. J. Rammer, H. Smith, Quantum field-theoretical methods in transport theory of metals. Rev. Mod. Phys. 58, 323–359 (1986)

    Article  ADS  Google Scholar 

  3. A.M. Zagoskin, Quantum Theory of Many-Body Systems: Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  4. H. Stolz, Einführung in die Vielelektronentheorie der Kristalle (Akademie-Verlag, Berlin, 1974)

    Google Scholar 

  5. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  6. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990)

    Book  Google Scholar 

  7. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems (W.A. Benjamin Inc, New York, 1962)

    MATH  Google Scholar 

  8. T. Matsubara, A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. P.C. Martin, J. Schwinger, Theory of many-particle systems. I. Phys. Rev. 115, 1342–1373 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. H. Lehmann, Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder. Nuovo Cim. 11, 342–357 (1954)

    Article  MATH  Google Scholar 

  11. F. Bechstedt, Principles of Surface Physics (Springer, Berlin, 2003)

    Book  Google Scholar 

  12. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics. Part II (Landau and Lifshitz: Course of Theoretical Physics) (Pergamon Press, Oxford, 1980)

    Google Scholar 

  13. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  14. L. Hedin, S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, in Solid State Physics, vol. 23, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York, 1969), pp. 1–181

    Google Scholar 

  15. V.M. Galitskii, A.B. Migdal, Application of quantum field theory methods to the many-body problem. Zh. Eksp. Teor. Fiz. 34, 139–150 (1958) [Sov. Phys. JETP (English Transl.) 7, 96–104 (1958)]

    Google Scholar 

  16. A. Schindlmayr, T.J. Pollehn, R.W. Godby, Spectra and total energies from self-consistent many-body perturbation theory. Phys. Rev. B 58, 12684–12690 (1998)

    Article  ADS  Google Scholar 

  17. F. Caruso, P. Rinke, X. Ren, M. Scheffler, A. Rubio, Unified description of ground and excited states of finite systems: the self-consistent GW approach. Phys. Rev. B 86, 081102(R) (2012)

    Article  ADS  Google Scholar 

  18. X. Ren, P. Rinke, V. Blum, J. Wiefernik, A. Tkatchenko, A. Sanfilippo, K. Reuter, M. Scheffler, Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 14, 053020 (2012)

    Article  ADS  Google Scholar 

  19. G. Strinati, Application of the Green’s function method to the study of the optical properties of semiconductors. Riv. Nuovo Cim. 11, 1–80 (1988)

    Article  ADS  Google Scholar 

  20. D.N. Zubarev, Double-time Green functions in statistical physics. Uspekhi Fiz. Nauk 71, 71–116 (1960) [Sov. Phys. Usp. (English Transl.) 3, 320–345 (1960)]

    Google Scholar 

  21. D.N. Zubarev, Zweizeitige Greensche Funktionen in der statistischen Physik. Fortschr. d. Physik (German Transl.) 9, 275–328 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. F. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Thermodynamic Green Functions. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics