Skip to main content

The Gudhi Library: Simplicial Complexes and Persistent Homology

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

We present the main algorithmic and design choices that have been made to represent complexes and compute persistent homology in the Gudhi library. The Gudhi library (Geometric Understanding in Higher Dimensions) is a generic C++ library for computational topology. Its goal is to provide robust, efficient, flexible and easy to use implementations of state-of-the-art algorithms and data structures for computational topology. We present the different components of the software, their interaction and the user interface. We justify the algorithmic and design decisions made in Gudhi and provide benchmarks for the code. The software, which has been developped by the first author, will be available soon at project.inria.fr/gudhi/software/ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: Computing persistent homology in chunks. In: Topological Methods in Data Analysis and Visualization III, pp. 103–117 (2014)

    Google Scholar 

  2. Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: An efficient data structure for computing persistent cohomology. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 695–706. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Boissonnat, J.-D., Maria, C.: Computing Persistent Homology with Various Coefficient Fields in a Single Pass. Rapport de recherche RR-8436, INRIA (December 2013)

    Google Scholar 

  4. Boissonnat, J.-D., Maria, C.: The simplex tree: An efficient data structure for general simplicial complexes. Algorithmica, 1–22 (2014)

    Google Scholar 

  5. Bubenik, P., Scott, J.A.: Categorification of persistent homology. CoRR, abs/1205.3669 (2012)

    Google Scholar 

  6. Carlsson, G.E., de Ishkhanov, T., Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76, 1–12 (2008)

    Article  Google Scholar 

  7. Carlsson, G.E., de Silva, V.: Zigzag persistence. Foundations of Computational Mathematics 10(4), 367–405 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazal, F., Oudot, S.: Towards persistence-based reconstruction in euclidean spaces. In: Proc. 24th. Annu. Sympos. Comput. Geom., pp. 231–241 (2008)

    Google Scholar 

  9. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete & Computational Geometry 37(1), 103–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Silva, V., Ghrist, R.: Coverage in sensor network via persistent homology. Algebraic & Geometric Topology 7, 339–358 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete & Computational Geometry 45(4), 737–759 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Derksen, H., Weyman, J.: Quiver representations. Notices of the AMS 52(2), 200–206 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Symposium on Computational Geometry, p. 345 (2014)

    Google Scholar 

  14. Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American Mathematical Society (2010)

    Google Scholar 

  15. Munkres, J.R.: Elements of algebraic topology. Addison-Wesley (1984)

    Google Scholar 

  16. Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discrete & Computational Geometry 33(2), 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maria, C., Boissonnat, JD., Glisse, M., Yvinec, M. (2014). The Gudhi Library: Simplicial Complexes and Persistent Homology. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics