Skip to main content

On a Formal Connection between Truth, Argumentation and Belief

  • Conference paper
Pristine Perspectives on Logic, Language, and Computation (ESSLLI 2013, ESSLLI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8607))

Abstract

Building on recent connections established between formal models used to study truth and argumentation, we define logics for reasoning about them that we then go on to axiomatize, relying on a link with three-valued Ɓukasiewicz logic. The first set of logics we introduce are based on formalizing so called skeptical reasoning, and our result shows that a range of semantics that are distinct for particular models coincide at the level of validities. Then, responding to the challenge that our logics do not capture credulous reasoning, we explore modal extensions, leading us to introduce models of three-valued belief induced by argument. We go on to take a preliminary look at some formal properties of this framework, offer a conjecture, then conclude by presenting some challenges for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P.: Non-wellfounded sets. Technical Report 14, CSLI (1988)

    Google Scholar 

  2. Arieli, O., Caminada, M.W.A.: A QBF-based formalization of abstract argumentation semantics. Journal of Applied Logic 11(2), 229–252 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena. CSLI, Stanford (1996)

    MATH  Google Scholar 

  4. Beall, J.C.: Revenge of the Liar: New Essays on the Paradox. Oxford University Press (2007)

    Google Scholar 

  5. Bezem, M., Grabmayer, C., Walicki, M.: Expressive power of digraph solvability. Ann. Pure Appl. Logic 163(3), 200–213 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. BĂ©ziau, J.-Y.: A sequent calculus for Ɓukasiewicz’s three-valued logic based on Suszko’s bivalent semantics. Bulletin of the Section of Logic 28(2), 89–97 (1998)

    Google Scholar 

  7. Boros, E., Gurvich, V.: Perfect graphs, kernels and cooperative games. Discrete Mathematics 306, 2336–2354 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Studia Logica 93(2-3), 109–145 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caminada, M.W.A.: Semi-stable semantics. In: Proceedings of the 2006 Conference on Computational Models of Argument: Proceedings of COMMA 2006, pp. 121–130. IOS Press, Amsterdam (2006)

    Google Scholar 

  11. Cook, R.: Patterns of paradox. The Journal of Symbolic Logic 69(3), 767–774 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theoretical Computer Science 170(1-2), 209–244 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Doutre, S.: Autour de la sĂ©matique prĂ©fĂ©rĂ©e des systĂšmes d’argumentation. PhD thesis, UniversitĂ© Paul Sabatier, Toulouse (2002)

    Google Scholar 

  14. Duchet, P.: Graphes noyau-parfaits, II. Annals of Discrete Mathematics 9, 93–101 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duchet, P., Meyniel, H.: Une gĂ©nĂ©ralisation du thĂ©orĂšme de Richardson sur l’existence de noyaux dans les graphes orientĂ©s. Discrete Mathematics 43(1), 21–27 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dyrkolbotn, S., Walicki, M.: Kernels in digraphs that are not kernel perfect. Discrete Mathematics 312(16), 2498–2505 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dyrkolbotn, S., Walicki, M.: Propositional discourse logic. Synthese 191(5), 863–899 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gabbay, D.: Modal provability foundations for argumentation networks. Studia Logica 93(2-3), 181–198 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Galeana-Sánchez, H., Guevara, M.-K.: Some sufficient conditions for the existence of kernels in infinite digraphs. Discrete Mathematics 309(11), 3680–3693 (2009); 7th International Colloquium on Graph Theory (ICGT) (2005)

    Google Scholar 

  21. Galeana-Sánchez, H., Neumann-Lara, V.: On kernels and semikernels of digraphs. Discrete Mathematics 48(1), 67–76 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Grossi, D.: Argumentation in the view of modal logic. In: McBurney, P., Rahwan, I., Parsons, S. (eds.) ArgMAS 2010. LNCS (LNAI), vol. 6614, pp. 190–208. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Grossi, D.: On the logic of argumentation theory. In: van der Hoek, W., Kaminka, G.A., LespĂ©rance, Y., Luck, M., Sen, S. (eds.) AAMAS, pp. 409–416. IFAAMAS (2010)

    Google Scholar 

  25. Kripke, S.: Outline of a theory of truth. The Journal of Philosophy 72(19), 690–716 (1975)

    Article  Google Scholar 

  26. Ɓukasiewicz, J.: Selected works, edited by L. Borkowski. Studies in Logic and the Foundations of Mathematics. North Holland, Amsterdam (1970)

    Google Scholar 

  27. Mercier, H., Sperber, D.: Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences 34, 57–74 (2011)

    Article  Google Scholar 

  28. Milner, E.C., Woodrow, R.E.: On directed graphs with an independent covering set. Graphs and Combinatorics 5, 363–369 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Minari, P.: A note on Ɓukasiewicz’s three-valued logic. Annali del Dipartimento di Filosofia dell’Universitá di Firenze 8(1) (2002)

    Google Scholar 

  30. Neumann-Lara, V.: SeminĂșcleos de una digrĂĄfica. Technical report, Anales del Instituto de MatemĂĄticas II, Universidad Nacional AutĂłnoma MĂ©xico (1971)

    Google Scholar 

  31. Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Priest, G.: The logic of paradox. Journal of Philosophical Logic 8, 219–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Quine, W.V.: The ways of paradox and other essays. Random House, New York (1966)

    Google Scholar 

  34. Rabern, L., Rabern, B., Macauley, M.: Dangerous reference graphs and semantic paradoxes. Journal of Philosophical Logic 42(5), 727–765 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rahwan, I., Simari, G.R. (eds.): Argumentation in artificial intelligence. Springer (2009)

    Google Scholar 

  36. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  37. Richardson, M.: On weakly ordered systems. Bulletin of the American Mathematical Society 52, 113–116 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  38. Richardson, M.: Solutions of irreflexive relations. The Annals of Mathematics, Second Series 58(3), 573–590 (1953)

    Article  MATH  Google Scholar 

  39. Tarski, A.: The concept of truth in formalised languages. In: Corcoran, J. (ed.) Logic, Semantics, Metamathematics, papers from 1923 to 1938, Hackett Publishing Company (1983) (translation of the Polish original from 1933)

    Google Scholar 

  40. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1944, 1947)

    Google Scholar 

  41. Walicki, M., Dyrkolbotn, S.: Finding kernels or solving SAT. Journal of Discrete Algorithms 10, 146–164 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wu, Y., Caminada, M.W.A., Gabbay, D.M.: Complete extensions in argumentation coincide with 3-valued stable models in logic programming. Studia Logica 93(2-3), 383–403 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yablo, S.: Paradox without self-reference. Analysis 53(4), 251–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dyrkolbotn, S. (2014). On a Formal Connection between Truth, Argumentation and Belief. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds) Pristine Perspectives on Logic, Language, and Computation. ESSLLI ESSLLI 2013 2012. Lecture Notes in Computer Science, vol 8607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44116-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44116-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44115-2

  • Online ISBN: 978-3-662-44116-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics