Skip to main content

Integrated Approach to the Evaluation of Chemical Dynamics and Anthropogenic Pollution Sources in the Sava River Basin

  • Chapter
  • First Online:
The Sava River

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 31))

Abstract

A variety of approaches are presented to evaluating the geochemical dynamics and anthropogenic pollution sources of the entire Sava River Basin, a major tributary of the Danube River. The water chemistry is found to be controlled by the geological composition of the drainage area in the upper reaches of the river, influenced by agricultural activity and biological processes in the middle reaches, and related to industrial impact in the lower reaches. The Sava exported 1.9 × 1011 mol C year−1 as dissolved inorganic carbon (DIC) and emitted 2.5 × 1010 mol C year−1 to the atmosphere. Carbon isotope composition indicates that up to 42 % of DIC originated from carbonate weathering and 23 % from degradation of organic matter. Agricultural and industrial sources are shown by statistical analysis to contribute significantly to the increase in Na+, K+, Cl, SO4 2− and NO3 concentrations in stream waters. Nitrate inputs are controlled by land use, and the elevated isotope composition of nitrate at some sites is attributed to sewage and/or animal waste. Contamination of suspended particulate matter by selected elements (Cu, Ni, Zn, Cd and Pb) in the main channel of the Sava River is low, while higher concentrations were observed in the main tributaries (Una, Vrbas, Bosna and Drina) due to industrial, mining and smelting activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARSO:

Slovenian Environment Agency

BA:

Bosnia and Herzegovina

DIC:

Dissolved inorganic carbon

DOC:

Dissolved organic carbon

EIONET:

European Environment Information and Observation Network

GIS:

Geographic Information System

HR:

Croatia

ICP-MS:

Inductively coupled plasma mass spectrometer

IEA:

Integrated environmental assessments

ME:

Monte Negro

MRT:

Mean residence time

N:

Nitrogen

P:

Phosphorous

POC:

Particulate organic carbon

RS:

Serbia

SARIB:

Sava River Basin: Sustainable Use, Management and Protection of Resources

SEM/EDS:

Scanning electron microscopy/energy dispersive spectroscopy

SI:

Slovenia

SPM:

Suspended particulate matter

SRB:

Sava River Basin

References

  1. EEA (2012) European waters – current status and future challenges – a synthesis EEA Report No 9, ISSN 1725-9177. Available at: http://www.eea.europa.eu/publications/european-waters-synthesis-2012

  2. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  Google Scholar 

  3. Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991

    Article  CAS  Google Scholar 

  4. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–1146

    Article  CAS  Google Scholar 

  5. Amiotte-Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cy 17(2):1038–1051

    Article  Google Scholar 

  6. Négrel P, Lachassagne P (2000) Geochemistry of the Maroni River (French Guiana) during the low water stage: implications for water-rock interactions and groundwater characteristics. J Hydrol 237:212–233

    Article  Google Scholar 

  7. Schulte P, Van Geldern Freitag H, Karim A et al (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth Sci Rev 109:20–31

    Article  CAS  Google Scholar 

  8. Gaillardet J, Dupre B, Allegre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63:4037–4051

    Article  Google Scholar 

  9. Liu Z, Zhao J (2000) Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol 39:1053–1058

    Article  CAS  Google Scholar 

  10. Palmer SM, Hope D, Billett MF et al (2001) Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338

    Article  CAS  Google Scholar 

  11. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918

    Article  CAS  Google Scholar 

  12. Kay D, Wyer MD, Crowther J, Fewtrell L (1999) Faecal indicator impacts on recreational waters: budget studies and diffuse source modelling. J Appl Microbiol 85:70S–82S

    Article  Google Scholar 

  13. Oliver DM, Haygarth PM, Clegg C, Heathwaite AL (2006) Differential E. coli die-off patterns associated with agricultural matrices. Environ Sci Technol 40:5710–5716

    Article  CAS  Google Scholar 

  14. Kay D, Falconer R (2008) Hydro-epidemiology: the emergence of a research agenda. Environ Fluid Mech 8:451–459

    Article  Google Scholar 

  15. Walling DE (1983) The sediment delivery problem. J Hydrol 65:203–207

    Article  Google Scholar 

  16. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodible phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  17. Paerl HW (2009) Controlling eutrophication along the freshwater–marine continuum. Estuar Coasts 32:593–601

    Article  CAS  Google Scholar 

  18. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  19. Foerstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin

    Book  Google Scholar 

  20. Cullen P, O’Loughlin EM (1982) Non-point sources of pollution. In: O’Loughlin EM, Cullen P (eds) Prediction in water quality. Australian Academy of Science, Canberra

    Google Scholar 

  21. Carpenter SR, Caraco NF, Correll DL et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  22. Thornton JA, Rast W, Holland MM et al (1999) Assessment and control of non-point pollution of aquatic ecosystems. Man and the biosphere series. Parthenon, Reading, UK

    Google Scholar 

  23. Barth JA, Veizer J, Mayer B (1998) Origin of particulate organic carbon in the upper St. Lawrence: isotopic constraints. Earth Plan Sci Lett 162(1):111–121

    Article  CAS  Google Scholar 

  24. Amiotte-Suchet P, Aubert D, Probst JL et al (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chem Geol 159(1):129–145

    Article  CAS  Google Scholar 

  25. Aucour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159(1):87–105

    Article  CAS  Google Scholar 

  26. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86

    Article  CAS  Google Scholar 

  27. Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic composition of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–1346

    Article  Google Scholar 

  28. Hélie JF, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River – isotopic and chemical constraint. Chem Geol 186(1):117–138

    Article  Google Scholar 

  29. Darling WG (2004) Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Q Sci Rev 23(7):743–770

    Article  Google Scholar 

  30. Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 86:137–154

    Article  Google Scholar 

  31. Doctor DH, Kendall C, Sebestyen SD et al (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Proc 22(14):2410–2423

    Article  CAS  Google Scholar 

  32. Brunet F, Dubois K, Veizer J et al (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chem Geol 265(3):563–572

    Article  CAS  Google Scholar 

  33. Ferguson PR, Dubois KD, Veizer J (2011) Fluvial carbon fluxes under extreme rainfall conditions: inferences from the Fly River, Papua New Guinea. Chem Geol 281(3):283–292

    Article  CAS  Google Scholar 

  34. Harrington RR, Kennedy BP, Chamberlain CP et al (1998) 15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chem Geol 147:281–294

    Article  CAS  Google Scholar 

  35. Hebert CG, Wassenaar LI (2001) Stable nitrogen isotopes in waterfowl feathers reflect agricultural land use in western Canada. Environ Sci Technol 35:3482–3487

    Article  CAS  Google Scholar 

  36. Chang CCY, Kendall C, Silva SR et al (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885

    Article  CAS  Google Scholar 

  37. Mayer B, Boyer EW, Goodale C et al (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry 57(58):171–192

    Article  Google Scholar 

  38. Voss M, Deutsch B, Elmgren R et al (2006) Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeoscience 3:663–676

    Article  CAS  Google Scholar 

  39. Johannsen A, Dähnke K, Emeis K (2008) Isotopic composition of nitrate in five German rivers discharging into the North Sea. Org Geochem 39:1678–1689

    Article  CAS  Google Scholar 

  40. Markovics R, Kanduč T, Szramek K et al (2010) Chemical dynamics of the Sava riverine system. J Environ Monit 12:2165–2176

    Article  CAS  Google Scholar 

  41. USGS, Open File Report 97-470I, available at: http://pubs.usgs.gov/of/1997/ofr-97-470/OF97-470I/

  42. CORINE Land Cover (1985) http://www.eea.europa.eu/publications/COR0-landcover

  43. EIONET – European Environment Information and Observation Network. http://nfp-si.eionet.eu.int/ (last access: February 2013)

  44. Szramek K, McIntosh JC, Williams EL et al (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperature zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins. Geochem Geophys Geosyst 8:Q04002. doi:10.1029/2006GC001337

    Article  Google Scholar 

  45. Szramek K, Walter LM, Kanduč T, Ogrinc N (2011) Dolomite versus calcite weathering in hydrogeochemically diverse watersheds established on bedded carbonates (Sava and Soča Rivers, Slovenia). Aquat Geochem 17:357–396

    Article  CAS  Google Scholar 

  46. Kanduč T, Ogrinc N, Mrak T (2007) Characteristics of suspended matter in the River Sava watershed, Slovenia. Isot Environ Health Stud 43(4):369–386

    Article  Google Scholar 

  47. Kanduč T, Burnik Šturm M, McIntosh J (2013) Chemical dynamics and evaluation of biogeochemical processes in alpine river Kamniška Bistrica, North Slovenia. Aquat Geochem, 19:323–346, doi:10.1007/s10498-013-9197-4

  48. Ogrinc N, Markovics R, Kanduč T et al (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the Danube. Appl Geochem 23:3685–3698

    Article  CAS  Google Scholar 

  49. Ogrinc N, Kanduč T, Golobočanin D et al (2010) A hydrogeochemical and isotope investigation of the river Sava watershed. In: Vaugh JC (ed) Watershed: management, restoration and environmental impact. Nova, Hauppauge, NY

    Google Scholar 

  50. Ščančar J, Zuliani T, Turk T, Milačič R (2007) Organotin compounds and selected metals in the marine environment of northern Adriatic Sea. Environ Monit Assess 127:263–275

    Google Scholar 

  51. Ogrinc N, Ščančar J (2013) Suspended particulate matter and water quality of the Sava River Basin. River Syst 20(4/4):197–211

    Article  Google Scholar 

  52. Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99(3):162–172

    Article  CAS  Google Scholar 

  53. Cao J, Yuan D, Groves C et al (2012) Carbon fluxes and sinks: the consumption of atmospheric and soil CO2 by carbonate rock dissolution. Acta Geol Sin Eng Ed 86(4):963–972

    Article  CAS  Google Scholar 

  54. Pawellek F, Frauenstein F, Veizer J (2002) Hydrochemistry and isotope geochemistry of the upper Danube River. Geochim Cosmochim Acta 66:3839–3854

    Article  CAS  Google Scholar 

  55. ARSO – Slovenian Environment Agency; http://www.arso.gov.si/en/

  56. Ludwig W, Amiotte Suchet P, Probst JL (1996) River discharges of carbon to the world’s oceans; determining local inputs of alkalinity and of dissolved and particulate organic carbon. Comptes Rendus de I’Academie des Sciences, series II Sci de la Ter et des Plan 323:1007–1014

    CAS  Google Scholar 

  57. Tao S (1998) Spatial and temporal variation in DOC in the Yichun River, China. Water Res 32:2205–2210

    Article  CAS  Google Scholar 

  58. Meybeck M (1993) Interactions of C, N, P and S, biogeochemical cycles and global change, vol 14, Natural sources of C, N, P and S. NATO ASI series. Springer, Berlin

    Google Scholar 

  59. Sempere R, Charriere B, Wambeke FV, Cauwet G (2000) Carbon inputs of the Rhone River to the Mediterranean Sea: biogeochemical implications. Glob Biogeochem Cy 14:669–681

    Article  CAS  Google Scholar 

  60. IPCC (2007) Chapter 7: Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 511–533

    Google Scholar 

  61. Ogrinc N, Kanduč T, Stichler W, Vreča P (2008) Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J Hydrol 359:303–312

    Article  CAS  Google Scholar 

  62. Robinson BW, Bottrell SH (1997) Discrimination of sulphur sources in pristine and polluted New Zealand river catchment using stable isotopes. Appl Geochem 12:305–319

    Article  CAS  Google Scholar 

  63. Cortecci G, Dinelli E, Bencini A et al (2002) Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany Italy: a chemical and isotopic reconnaissance. Appl Geochem 17:79–92

    Article  CAS  Google Scholar 

  64. Kanduč T, Ogrinc N (2007) Hydrogeochemical characteristics of the river Sava watershed in Slovenia=Hidrogeokemične značilnosti porečja reke Save v Sloveniji. Geologija 50:157–177

    Article  Google Scholar 

  65. Falkowski P, Scholes RJ, Boyle E et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296

    Article  CAS  Google Scholar 

  66. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  67. Vitoušek PM, Naylor R, Crews T et al (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  Google Scholar 

  68. Bowes MJ, Hilton J, Irons GP, Hornby DD (2005) The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management. Sci Total Environ 344:67–81

    Article  CAS  Google Scholar 

  69. Arnscheidt J, Jordan P, Li S et al (2007) Defining the sources of low-flow phosphorus transfers in complex catchments. Sci Total Environ 382:1–13

    Article  CAS  Google Scholar 

  70. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Article  CAS  Google Scholar 

  71. Dragun Z, Roje V, Mikac N, Raspor B (2009) Preliminary assessment of total dissolved trace metal concentrations in Sava River water. Environ Monit Assess 159:99–110

    Article  CAS  Google Scholar 

  72. Heathwaite AL (2010) Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshwat Biol 55:241–257

    Article  Google Scholar 

  73. E-PRTR – European Pollutant Release and Transfer Register. http://prtr.ec.europa.eu/ (last access: March 2013)

  74. SRBMP (2011) Sava River Basin Management Plan, Draft Version 6.2, available at: http://www.savacommission.org/dms/docs/dokumenti/srbmp_micro_web/srbmp/sava_rbmp_draft_full_version.pdf

  75. Viersa J, Dupréa B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868

    Article  Google Scholar 

  76. Guieu C, Martin J-M, Tankéré SPC et al (1998) On trace metal geochemistry in the Danube River and Western Black Sea. Estuar Coast Shelf Sci 47:471–485

    Article  CAS  Google Scholar 

  77. Ramsey MH (1993) Sampling and analytical quality control (SAX) for improved error estimation in the measurement Pb in the environment using robust analysis of variance. Appl Geochem 2:149–153

    Article  CAS  Google Scholar 

  78. Milačič R, Ščančar J, Murko S et al (2009) A complex investigation of the extent of pollution in sediments of the Sava River. Part 1: selected elements. Environ Monit Assess 163:263–275

    Google Scholar 

  79. ICPDR (2008) International Commission for the Protection of Danube River. Joint Danube Survey 2. Final scientific report

    Google Scholar 

Download references

Acknowledgements

The research was performed within the EU 6th Framework Specific Targeted Research Project – SARIB (Sava River Basin: Sustainable Use, Management and Protection of Resources), Contract No. INCO-CT-2004-509160. The project was also supported financially by the US National Science Foundation (NSF-EAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nives Ogrinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogrinc, N., Kanduč, T., Kocman, D. (2015). Integrated Approach to the Evaluation of Chemical Dynamics and Anthropogenic Pollution Sources in the Sava River Basin. In: Milačič, R., Ščančar, J., Paunović, M. (eds) The Sava River. The Handbook of Environmental Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44034-6_4

Download citation

Publish with us

Policies and ethics