Skip to main content

Real Root Isolation of Regular Chains

  • Conference paper
  • First Online:
Computer Mathematics

Abstract

We present an algorithm RealRootIsolate for isolating the real roots of a polynomial system given by a zerodimensional squarefree regular chain. The output of the algorithm is guaranteed in the sense that all real roots are obtained and are described by boxes of arbitrary precision. Real roots are encoded with a hybrid representation, combining a symbolic object, namely a regular chain and a numerical approximation given by intervals. Our algorithm is a generalization, for regular chains, of the algorithm proposed by Collins and Akritas. We have implemented RealRootIsolate as a command of the module SemiAlgebraicSetTools of the RegularChains library in Maple. Benchmarks are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recent investigations of A. Akritas seem to prove that Uspensky only had an incomplete knowledge of Vincent’s paper, from [29, pp. 363–368].

  2. 2.

    The notions of an equiprojectable variety and equiprojectable decomposition are discussed in [8].

  3. 3.

    triangular set in the sense that each polynomial introduces exactly one more variable.

  4. 4.

    the sign of an interval not meeting zero is just the sign of any element of it.

  5. 5.

    otherwise, splittings need to be handled each time a function returns a value.

References

  1. Akritas, A.G.: There is no Uspensky’s method. In: proceedings of ISSAC (1986)

    Google Scholar 

  2. Akritas, A.G., Strzeboński, A.W., Vigklas, P.S.: Implementations of a new theorem for computing bounds for positive roots of polynomials. Comput. 78(4), 355–367 (2006)

    Article  MATH  Google Scholar 

  3. Akritas, A.G., Vigklas, P.S.: A comparison of various methods for computing bounds for positive roots of polynomials. J. Univ. Comput. Sci. 13(4), 455–467 (2007)

    MathSciNet  Google Scholar 

  4. Becker, E., Mora, T., Marinari, M.G., Traverso, C.: The shape of the shape lemma. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 129–133. ACM Press, New York, USA (1994)

    Google Scholar 

  5. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real roots in zero-dimensional triangular systems. Journal of Symbolic Computation 44(7), 768–785 (2009). http://www.sciencedirect.com/science/article/B6WM7-4TKPVBT-1/2/34927cd53d447d69e3b126d3fa93006a

  6. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’rule of signs. In: proceedings of ISSAC’76, pp. 272–275. Yorktown Heights NY (1976)

    Google Scholar 

  7. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput. 34(2), 145–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: ISSAC’05, pp. 108–115. ACM Press (2005)

    Google Scholar 

  9. Dahan, X., Schost, É.: Sharp estimates for triangular sets. In: ISSAC 04, pp. 103–110. ACM (2004)

    Google Scholar 

  10. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Proceedings of EUROCAL 85 Vol. 2, Lect. Notes in Comp. Sci. vol. 204, pp. 289–290. Springer (1985)

    Google Scholar 

  11. Descartes, R.: Géométrie (1636)

    Google Scholar 

  12. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with bit-stream coefficients. In: CASC, vo. 3718 of LNCS, pp. 138–149. Springer (2005)

    Google Scholar 

  13. Faugère, J.C.: A new efficient algorithm to compute Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, J.R., Krandick, W.: Polynomial real root isolation using approximate arithmetic. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 225–232. ACM (1997)

    Google Scholar 

  15. Leiserson, C.E., Li, L., Moreno Maza, M., Xie, Y.: Efficient evaluation of large polynomials. In: Proceedings of International Congress of Mathematical Software—ICMS 2010. Springer (2010)

    Google Scholar 

  16. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias S. Kotsireas (ed.) Maple Conference 2005, pp. 355–368 (2005)

    Google Scholar 

  17. Li, X., Moreno Maza, M., Pan, W.: Computations modulo regular chains. In: proceedings of ISSAC’09, pp. 239–246. ACM Press, New York, USA (2009)

    Google Scholar 

  18. Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: The modpn library: Bringing fast polynomial arithmetic into maple. In: MICA’08 (2008)

    Google Scholar 

  19. Lu, Z., He, B., Luo, Y., Pan, L.: An algorithm of real root isolation for polynomial systems. In: Wang, D., Zhi, L. (eds.) Proceedings of Symbolic Numeric Computation 2005, pp. 94–107 (2005)

    Google Scholar 

  20. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 242–268. Springer (1988)

    Google Scholar 

  21. Moreno Maza, M.: On triangular decompositions of algebraic varieties. Tech. Rep. TR 4, 99, NAG Ltd, Oxford, UK, : presented at the MEGA-2000 Conference. Bath, England (1999)

    Google Scholar 

  22. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. Tech. rep., INRIA (Aug 2005), (number RR-5658)

    Google Scholar 

  23. Mourrain, B., Rouillier, F., Roy, M.F.: The bernstein basis and real root isolation. Comb. Comput. Geom., MSRI Publ. 52, 459–478 (2005)

    MathSciNet  Google Scholar 

  24. Rioboo, R.: Real algebraic closure of an ordered field, implementation in axiom. In: Proceedings of ISSAC’92, pp. 206–215. ISSAC, ACM Press (1992)

    Google Scholar 

  25. Rioboo, R.: Towards faster real algebraic numbers. J. Symb. Comput. 36(3–4), 513–533 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. AAECC 9, 433–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rouillier, F., Revol, N.: The multiple precision floating-point interval library (MPFI) library. http://gforge.inria.fr/projects/mpfi/

  28. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. J. Comput. Appl. Math. 162(1), 33–50 (2003)

    Article  MathSciNet  Google Scholar 

  29. Serret, J.A.: Cours d’Algèbre Supérieure, 4th edn. Gauthier-Villars, Paris (1877)

    MATH  Google Scholar 

  30. Uspensky, J.V.: Theory of Equations. McGraw-Hill Co., New York (1948)

    Google Scholar 

  31. von zur Gathen, J., Gerhard, J.: Fast algorithms for taylor shifts and certain difference equations. In: ISSAC, pp. 40–47 (1997).

    Google Scholar 

  32. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symb. Comput. 34(5), 461–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math. Appl. 52(6–7), 853–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Lemaire or Marc Moreno Maza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M. (2014). Real Root Isolation of Regular Chains. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_4

Download citation

Publish with us

Policies and ethics