Skip to main content

Part of the book series: Springer Reference Medizin ((SRM))

  • 7915 Accesses

Zusammenfassung

In diesem Kapitel wird zunächst die Hämatopoese beschrieben: Die Blutbildung im Knochenmark geht von pluripotenten Stammzellen aus, welche an das Stroma der Knochenbälkchen angeheftet sind. Aus diesen entwickeln sich durch Teilung und Differenzierung die Progenitor-, die Vorläufer- und die reifen Zellen der Hämatopoese. Sodann werden die Prinzipien der Diagnostik dargestellt: Nach Anamnese und Untersuchungsbefund wird eine Verdachtsdiagnose gestellt, die durch eine nachfolgende Labordiagnostik bestätigt oder widerlegt werden kann. Sodann werden Ausstrichpräparate von peripherem Blut und Knochenmarkaspiraten mikroskopisch beurteilt. Hierdurch kann die Differenzialdiagnose i. d. R. weiter eingeengt werden und die weitere Diagnostik gezielt erfolgen. Schließlich geht es um die hämatopoetische Stammzelltransplantation (HSZT): Die Anwendung einer intensiven Chemo- und/oder Radiotherapie mit anschließender autologer oder allogener HSZT erlaubt die Behandlung von Patienten, die mit konventioneller Therapie nicht heilbar sind. Die HSZT ist auch die Therapie der Wahl für die meisten Erkrankungen mit Knochenmarkversagen in allen drei Zellreihen. Die genetischen Grundlagen der angeborenen Formen dieser Panzytopenien wie Fanconi-Anämie und Dyskeratosis congenita sind in den letzten Jahren weitestgehend dargestellt worden, während die Ätiologie der erworbenen aplastischen Anämie unklar bleibt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

Zu 1.1

  • Ballmaier M, Germeshausen M, Schulze H, et al. (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97: 139–146

    Google Scholar 

  • Dzierzak E (1999) Embryonic beginnings of definitive hematopoietic stem cells. Ann NY Acad Sci 872: 256–262

    Google Scholar 

  • Friedman AD (2007) Transcriptional Control of granulocyte and monocyte development. Oncogene 26: 6816–6828

    Google Scholar 

  • Jones DL, Wagner AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9: 11–21

    Google Scholar 

  • Joshi C, Enver T (2003) Molecular complexities of stem cells. Curr Opin Hematol 10: 220–228

    Google Scholar 

  • Länger F, Kreipe HH (2003) Differenzierung myeloischer und lymphatischer Zellen. In: Ganten D, Ruckpaul K (Hrsg) Molekularmedizinische Grundlagen von hämatologischen Neoplasien. Springer, Berlin, S 89–129

    Google Scholar 

  • Lotem J, Sachs L (2002) Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 21: 3284–3294

    Google Scholar 

  • Orkin SH, Zon LI (2008) Hematopoiesis: An evolving paradigm for stem cell biology. Cell 132: 631–644

    Google Scholar 

  • Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7: 105–117

    Google Scholar 

  • Skokowa J, Cario G, Uenalan M, et al. (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12: 1191–1197

    Google Scholar 

  • Skokowa J, Lan D, Thakur BK, et al. (2009) NAMPT is essential for the G-CSF- induced myeloid differentiation via a NAD(+)-sirtuin-dependent pathway. Nat Med 15: 151–158

    Google Scholar 

Zu 1.2

  • Gadner H, Gaedicke G, Niemeyer C, Ritter J (Hrsg) (2006) Pädiatrische Hämatologie und Onkologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ratei R, Schabath R, Karawajew L, et al. (2013) Lineage classification of childhood acute lymphoblastic leukemia according to the EGIL recommendations: results of the ALL-BFM 2000 trial. Klin Padiatr 225 (Suppl 1): S34–39

    Google Scholar 

  • van Dongen JJ, Lhermitte L, Böttcher S, et al. (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26: 1908–1975

    Google Scholar 

Zu 1.3

  • Arcese W, Mangione I, Picardi A (2011) Algorithm for donor selection in 2011. Curr Opin Hematol 18: 401–407

    Google Scholar 

  • Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122: 491–498

    Google Scholar 

  • Barker JN, Byam C, Scaradavou A (2011) How I treat: the selection and acquisition of unrelated cord blood grafts. Blood 117: 2332–2339

    Google Scholar 

  • Breuer S, Rauch M, Matthes-Martin S, LionT (2012) Molecular diagnosis and management of viral infections in hematopoietic stem cell transplant recipients. Mol Diagn Ther 16: 63–77

    Google Scholar 

  • Corbacioglu S, Cesaro S, Faraci M, et al. (2012) Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379: 1301–1309

    Google Scholar 

  • Couriel D, Carpenter PA, Cutler C, et al. (2006) Ancillary therapy and supportive care of chronic graft-versus-host disease: national institutes of health consensus development project on criteria for clinical trials in chronic Graft-versus-host disease: V. Ancillary Therapy and Supportive Care Working Group Report. Biol Blood Marrow Transplant 12: 375–396

    Google Scholar 

  • Dignan FL, Scarisbrick JJ, CornishJ, et al. (2012) Organ-specific management and supportive care in chronic graft-versus-host disease. Br J Haematol 158: 62–78

    Google Scholar 

  • Dvorak CC, Gracia CR, Sanders JE, et al. (2011) NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks. Biol Blood Marrow Transplant 17: 1725–1738

    Google Scholar 

  • Ferrara JL, Levy R, Chao NJ (1999) Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant 5: 347–356

    Google Scholar 

  • Ferrara JL, Levine JE, Reddy P, Holler E (2009) Graft-versus-host disease. Lancet 373: 1550–1561

    Google Scholar 

  • Feucht J, Joachim L, Lang P, Feuchtinger T (2013) Adoptive T-cell transfer for refractory viral infections with cytomegalovirus, Epstein-Barr virus or adenovirus after allogeneic stem cell transplantation. Klin Padiatr 225: 164–169

    Google Scholar 

  • Filipovich AH, Weisdorf D, Pavletic S, et al. (2005) National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 11: 945–956

    Google Scholar 

  • Haddad IY (2013) Stem cell transplantation and lung dysfunction. Curr Opin Pediatr 25: 350–356

    Google Scholar 

  • Jodele S, Licht C, Goebel J, et al. (2013) Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 122: 2003–2007

    Google Scholar 

  • Lang P, Mueller I, Greil J, et al. (2008) Retransplantation with stem cells from mismatched related donors after graft rejection in pediatric patients. Blood Cells Mol Dis 40: 33–39

    Google Scholar 

  • Lee SJ, Klein JP, Barrett AJ, et al. (2002). Severity of chronic graft-versus-host disease: association with treatment-related mortality and relapse. Blood 100: 406–414

    Google Scholar 

  • Leung W, Campana D, Yang J, et al. (2011) High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 118: 223–230

    Google Scholar 

  • Long EO, Sik KH, Liu D, et al. (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Ann Rev Immunol 31: 227–235

    Google Scholar 

  • Luznik L, O’Donnell PV, Fuchs EJ (2012) Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol 39: 683–693

    Google Scholar 

  • Martin PJ, Rizzo JD, Wingard JR, et al. (2012) First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 18: 1150–1163

    Google Scholar 

  • Mehta PA, Faulkner LB (2013) Hematopoietic cell transplantation for thalassemia: a global perspective BMT tandem meeting 2013. Biol Blood Marrow Transplant 19: S70–S73

    Google Scholar 

  • Middleton D, Gonzelez F (2010) The extensive polymorphism of KIR genes. Immunology 129: 8–19

    Google Scholar 

  • Oevermann L, Handgretinger R (2012) New strategies for haploidentical transplantation. Pediatr Res 71: 418–426

    Google Scholar 

  • Pende D, Marcenaro S, Falco M, et al. (2009) Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood 113: 3119–3129

    Google Scholar 

  • Petersdorf EW, Malkki M, Gooley TA, et al. (2007) MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 4: e8

    Google Scholar 

  • Pulsipher MA, Skinner R, McDonald GB, et al. (2012) National Cancer Institute, National Heart, Lung and Blood Institute/Pediatric Blood and Marrow Transplantation Consortium First International Consensus Conference on late effects after pediatric hematopoietic cell transplantation: the need for pediatric-specific long-term follow-up guidelines. Biol Blood Marrow Transplant 18: 334–347

    Google Scholar 

  • Rosenberg PS, Socie G, Alter BP, Gluckman E (2005) Risk of head and neck squamous cell cancer and death in patients with Fanconi anemia who did and did not receive transplants. Blood 105: 67–73

    Google Scholar 

  • Schultz KR, Baker KS, Boelens JJ, et al. (2013) Challenges and Opportunities for International Cooperative Studies in Pediatric Hematopoeitic Cell Transplantation: Priorities of The Westhafen Intercontinental Group. Biol Blood Marrow Transplant 19: 1279–1287

    Google Scholar 

  • Wolff D, Schleuning M, von Harsdorf S, et al. (2011) Consensus Conference on Clinical Practice in Chronic GvHD: Second-Line Treatment of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 17: 1–17

    Google Scholar 

Zu 1.4

  • Alter BP, Baerlocher GM, Sarvage SA, et al. (2007) Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 110: 1439–1447

    Google Scholar 

  • Alter BP, Giri N, Savage SA, et al. (2010) Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol 150: 179–188

    Google Scholar 

  • Alter BP, Rosenberg PS, Giri N, et al. (2012) Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica 97: 353–359

    Google Scholar 

  • Armanios M (2012) Telomerase and idiopathic pulmonary fibrosis. Mutat Res 730 (1-2): 52–58

    Google Scholar 

  • Armanios M, Blackburn EH (2013) The telomere syndromes. Nat Rev Genet 13: 693–704

    Google Scholar 

  • Barbaro P, Vedi A (2016) Survival after Hematopoietic Stem Cell Transplant in Patients with Dyskeratosis Congenita: Systematic Review of the Literature. Biol Blood Marrow Transplant 22: 1152–1158

    Google Scholar 

  • Burris AM, Ballew BJ, Kentosh JB, et al. (2016) Hoyeraal-Hreidarsson Syndrome due to PARN Mutations: Fourteen Years of Follow-Up. Pediatr Neurol 56: 62–68

    Google Scholar 

  • Butturini A, Gale RP, Verlander PC, et al (1994) Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84: 1650–1655

    Google Scholar 

  • Calado RT, Regal JA, Kleiner DE, et al. (2009) A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS One 20;4:e7926

    Google Scholar 

  • Cioc AM, Wagner JE, MacMillan ML, et al. (2010) Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol 133: 92–100

    Google Scholar 

  • Desmond R, Townsley DM, Dumitriu B, et al. (2014) Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood 123: 1818–1825

    Google Scholar 

  • Dokal I (2011) Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program 480–486; doi: 10.1182/asheducation-2011.1.480

    Google Scholar 

  • Dong H, Nebert DW, Bruford EA, et al. (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9: 32

    Google Scholar 

  • Dufour C, Veys P, Carraro E, et al. (2015) Similar outcome of upfront-unrelated and matched sibling stem cell transplantation in idiopathic paediatric aplastic anaemia. A study on behalf of the UK Paediatric BMT Working Party, Paediatric Diseases Working Party and Severe Aplastic Anaemia Working Party of EBMT. Br J Haematol 171: 585–594

    Google Scholar 

  • Farruggia P, Di Cataldo A, Pinto RM, et al. (2015) Pearson Syndrome: A Retrospective Cohort Study from the Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica). JIMD Rep 26: 37–43

    Google Scholar 

  • Führer M, Rampf U, Baumann I, et al. (2005) Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood 106: 2102–2104

    Google Scholar 

  • Gregory JJ Jr, Wagner JE, Verlander PC, et al. (2001) Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci U S A 98: 2532–2537

    Google Scholar 

  • Jspeert HI, Warris A, Flier M, et al. (2013) Clinical Spectrum of LIG4 Deficiency Is Broadened with Severe Dysmaturity, Primordial Dwarfism, and Neurological Abnormalities. Hum Mutat 34: 1611–1614

    Google Scholar 

  • Katagiri T, Sato-Otsubo A, Kashiwase K, et al. (2011) Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood 118: 6601–6609

    Google Scholar 

  • Narita A, Kojima S (2016) Biomarkers for predicting clinical response to immunosuppressive therapy in aplastic anemia. Int J Hematol 104: 153–158

    Google Scholar 

  • Khincha PP, Wentzensen IM, Giri N, et al. (2014) Response to androgen therapy in patients with dyskeratosis congenita. Br J Haematol 165: 349–357

    Google Scholar 

  • Kosaka Y, Yagasaki H, Sano K, et al. (2008) Prospective multicenter trial comparing repeated immunosuppressive therapy with stem-cell transplantation from an alternative donor as second-line treatment for children with severe and very severe aplastic anemia. Blood 111: 1054–1059

    Google Scholar 

  • Kutler DK, Singh S, Satagopan J, et al. (2003) A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101: 1249–1256

    Google Scholar 

  • Nebert DW, Dong H, Bruford EA, et al. (2016) Letter to the editor for »Update of the human and mouse Fanconi anemia genes«. Hum Genomics 10: 25

    Google Scholar 

  • Niihori T, Ouchi-Uchiyama M, Sasahara Y et al. (2015) Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet 97: 848–854

    Google Scholar 

  • Pannicke U, Hönig M, Hess I et al. (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41: 101–105

    Google Scholar 

  • Petryk A, Kanakatti Shankar R, Giri N (2015) Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J Clin Endocrinol Metab 100: 803–811

    Google Scholar 

  • Quentin S, Cuccuini W, Ceccaldi R, et al. (2011) Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117: e161–170

    Google Scholar 

  • Queisser A (2010) Indukti

    Google Scholar 

  • on eines alternativen Telomererhaltungsmechanismus in humanen Tumoren durch genetische Inhibition der Telomerase. Inaugural-Dissertation, Fakultät für Biologie der Albert-Ludwigs-Universität Freiburg

    Google Scholar 

  • Rosenberg PS, Greene MH, Alter BP (2003) Cancer incidence in persons with Fanconi anemia. Blood 101: 822–826

    Google Scholar 

  • Samarasinghe S, Steward C, Hiwarkar P et al. (2012) Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: a United Kingdom multicentre retrospective experience. Br J Haematol 157: 339–346

    Google Scholar 

  • Schindler D, Endt D, Neveling K (2015) Fanconi Anemia. In: M. Schwab (ed.) Encyclopedia of Cancer. Springer, Berlin Heidelberg

    Google Scholar 

  • Shimamura A, Alter BP (2010) Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev 24: 101–122

    Google Scholar 

  • Thompson AA, Woodruff K, Feig SA, et al. (2001) Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Br J Haematol 113: 866–870

    Google Scholar 

  • Townsley DM, Dumitriu B, Young NS (2014) Bone marrow failure and the telomeropathies. Blood 124: 2775–83

    Google Scholar 

  • Townsley DM, Dumitriu B, Liu D et al. (2016) Danazol Treatment for Telomere Diseases. N Engl J Med 374: 1922–1931

    Google Scholar 

  • van den Heuvel-Eibrink MM, Bredius RG, te Winkel ML, et al. (2005) Childhood paroxysmal nocturnal haemoglobinuria (PNH), a report of 11 cases in the Netherlands. Br J Haematol. 128: 571–577

    Google Scholar 

  • Walne AJ, Collopy L, Cardoso S, et al. (2016) Marked overlap of four genetic syndromes with dyskeratosis congenita confounds clinical diagnosis. Haematologica 101: 1180–1189

    Google Scholar 

  • Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. (2003) Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood 102: 916–918

    Google Scholar 

  • Yoshida N, Kobayashi R, Yabe H, et al. (2014) First-line treatment for severe aplastic anemia in children: bone marrow transplantation from a matched family donor versus immunosuppressive therapy. Haematologica. 99: 1784–1791

    Google Scholar 

  • Yoshimi A, Niemeyer CM, Führer MM, Strahm B (2013) Comparison of the efficacy of rabbit and horse antithymocyte globulin for the treatment of severe aplastic anemia in children. Blood 121: 860–861

    Google Scholar 

  • Yoshizato T, Dumitriu B, Hosokawa K (2015) Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med 373: 35–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K.-W. Sykora , K. Welte , C. Niemeyer , R. Handgretinger , S. Matthes-Martin , P. Lang , B. Strahm , C. Kratz , K.-W. Sykora , K. Welte , C. Niemeyer , R. Handgretinger , S. Matthes-Martin , P. Lang , C. Niemeyer , B. Strahm or C. Kratz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Sykora, KW. et al. (2018). Knochenmark. In: Niemeyer, C., Eggert, A. (eds) Pädiatrische Hämatologie und Onkologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43686-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43686-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43685-1

  • Online ISBN: 978-3-662-43686-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics