Skip to main content

Quantum Entanglement

  • Chapter
  • First Online:
Introduction to Quantum Information Science

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4841 Accesses

Abstract

Quantum entanglement is a striking feature of quantum mechanics, and clarifying its properties is crucially important for the development of quantum information technology. In recent years, the theory of entanglement has been rapidly developed along with quantum information theory. In particular, introducing the concept of local operations and classical communication enables us to quantify the amount of entanglement, and leads to our much better understanding of quantum entanglement. In this chapter, the various properties of quantum entanglement are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(m\) was evaluated in the leading order of \(n\) in (7.13), and hence (7.14) should be precisely written as \(|\psi \rangle ^{\otimes n}\rightarrow |\text {EPR}\rangle ^{\otimes (n h(p)+o(n))}\).

  2. 2.

    The precise meaning of (7.18) is \(|\text {EPR}\rangle ^{\otimes (nh(p)+o(n))} \rightarrow |\psi \rangle ^{\otimes n}\) (see e.g. (7.17)) as in the case of entanglement concentration.

  3. 3.

    Precisely, the exact cycle of (7.20) is impossible even in the limit \(n \rightarrow \infty \). This is because the two conversion rates coincide only in the leading order of \(n\), and moreover the final state of (7.18) is close to but not equal to the initial state of (7.14). To complete the above cycle exactly, we need to consume the excess entanglement of the amount \(o(n)\) [14].

  4. 4.

    However, even in a probabilistic way, it is impossible to create any entangled state from unentangled states by LOCC.

  5. 5.

    In the case of bipartite pure states, the Schmidt decomposition is applicable and they are classified by the number of terms in the Schmidt decomposition, because it is equal to the rank of the reduced density operators.

  6. 6.

    They are indeed equivalent in \({\mathbb C}^2\otimes {\mathbb C}^n\) for \(n\ge 2\).

  7. 7.

    Due to the fact that any positive map \(\varGamma \) in \({\mathbb C}^2\otimes {\mathbb C}^2\) and \({\mathbb C}^2\otimes {\mathbb C}^3\) is written as \(\varGamma =\varTheta _1+\varTheta _2\circ T\) with \(\varTheta _1\) and \(\varTheta _2\) being completely positive maps (\(T\) denotes transposition).

  8. 8.

    Note that, even though \(E\) satisfies (1) and (2), \(E^{\infty }\) does not necessarily satisfy them. If \(E\) also satisfies subadditivity, however, \(E^{\infty }\) automatically satisfies the weak monotonicity (\(1^{\prime }\)) and (2) [34].

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  6. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  7. P. van Loock, S.L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000)

    Article  ADS  Google Scholar 

  8. S. Ishizaka, T. Hiroshima, Phys. Rev. Lett. 101, 240501 (2008)

    Article  ADS  Google Scholar 

  9. C.H. Bennett, S.J. Wiesner, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Phys. Rev. A 59, 1070–1091 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  12. B. Schumacher, Phys. Rev. A 51, 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.K. Lo, S. Popescu, Phys. Rev. A 63, 022301 (2001)

    Article  ADS  Google Scholar 

  14. W. Kumagai, M. Hayashi, Phys. Rev. Lett. 111, 130407 (2013)

    Article  ADS  Google Scholar 

  15. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Ishizaka, M.B. Plenio, Phys. Rev. A 72, 042325 (2005)

    Article  ADS  Google Scholar 

  17. L. Chen, M. Hayashi, Phys. Rev. A 83, 022331 (2011). and references therein

    Article  ADS  Google Scholar 

  18. R. Werner, Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  19. A. Peres, Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. M. Horodecki, P. Horodecki, Phys. Rev. A 59, 4206–4216 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. N.J. Cerf, C. Adami, R.M. Gingrich, Phys. Rev. A 60, 898–909 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. B.M. Terhal, Phys. Lett. A 271, 319–326 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. A. Kent, Phys. Rev. Lett. 81, 2839–2841 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Ishizaka, Phys. Rev. Lett. 93, 190501 (2004)

    Article  ADS  Google Scholar 

  26. D. Yang, M. Horodecki, R. Horodecki, B. Synak-Radtke, Phys. Rev. Lett. 95, 190501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. S. Ishizaka, M.B. Plenio, Phys. Rev. A 71, 052303 (2005). and references therein

    Google Scholar 

  30. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  31. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619–1633 (1998)

    Article  ADS  Google Scholar 

  32. M. Horodecki, Quantum Inf. Comput. 1, 3 (2001)

    MATH  MathSciNet  Google Scholar 

  33. M.B. Plenio, S. Virmani, Quantum Inf. Comput. 7, 1 (2007)

    MATH  MathSciNet  Google Scholar 

  34. M.J. Donald, M. Horodecki, O. Rudolph, J. Math. Phys. 43, 4252 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. P.M. Hayden, M. Horodecki, B.M. Terhal, J. Phys. A: Math. Gen. 34, 6891 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M.B. Hastings, Nat. Phys. 5, 255–257 (2009)

    Article  Google Scholar 

  37. W.K. Wootters, Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  38. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. E.M. Rains, Phys. Rev. A 60, 179–184 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Hayashi, Quantum Information: An Introduction (Springer, Berlin, 2006) (Originally published in Japanese in 2004)

    Google Scholar 

  41. A. Miranowicz, S. Ishizaka, Phys. Rev. A 78, 032310 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Zhu, L. Chen, M. Hayashi, New J. Phys. 12, 083002 (2010)

    Article  ADS  Google Scholar 

  43. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 84, 2014–2017 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Vidal, J. Mod. Opt. 47, 355–376 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  45. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M., Ishizaka, S., Kawachi, A., Kimura, G., Ogawa, T. (2015). Quantum Entanglement. In: Introduction to Quantum Information Science. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43502-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43502-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43501-4

  • Online ISBN: 978-3-662-43502-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics