Skip to main content

Theory and Application of Regularization Modeling of Turbulence

  • Conference paper
Turbulence and Interactions

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 125))

  • 1231 Accesses

Abstract

Turbulence readily arises in numerous flows in nature and technology. The large number of degrees of freedom of turbulence poses serious challenges to numerical approaches aimed at simulating and controlling such flows. While the Navier-Stokes equations are commonly accepted to precisely describe fluid turbulence, alternative coarsened descriptions need to be developed to cope with the wide range of length and time scales. These coarsened descriptions are known as large-eddy simulations in which one aims to capture only the primary features of a flow, at considerably reduced computational effort. Such coarsening introduces a closure problem that requires additional phenomenological modeling. A systematic approach to the closure problem, known as regularization modeling, will be reviewed. Its application to turbulent mixing will be illustrated. Leray and LANSalpha regularization are discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved turbulence models based on LES of homogeneous incompressible turbulent flows. Department of Mechanical Engineering. Report No. TF-19, Stanford (1984)

    Google Scholar 

  • Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)

    Article  MATH  ADS  Google Scholar 

  • Foias, C., Holm, D.D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Physica D 152, 505–519 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  • Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Geurts, B.J.: Inverse Modeling for Large-Eddy Simulation. Phys. of Fluids 9, 3585–3588 (1997)

    Article  ADS  Google Scholar 

  • Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14, 17–22 (2002)

    Article  MathSciNet  Google Scholar 

  • Geurts, B.J., Holm, D.D.: Regularization modeling for large-eddy simulation. Phys. of Fluids 15, L13 (2003)

    Google Scholar 

  • Geurts, B.J., Holm, D.D.: Leray and NS-α modeling of turbulent mixing. J. of Turbulence 7, 1–33 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • Kuczaj, A.K., Geurts, B.J.: Mixing in manipulated turbulence. J. of Turbulence 7, 1–28 (2007)

    MathSciNet  Google Scholar 

  • Kuerten, J.G.M., Geurts, B.J., Vreman, A.W., Germano, M.: Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer. Phys. Fluids 11, 3778–3785 (1999)

    Article  MATH  ADS  Google Scholar 

  • Leray, J.: Sur les mouvements d’un fluide visqueux remplissant l’espace. Acta Mathematica 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • Salvetti, M.V., Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. of Fluids 7, 2831–2847 (1995)

    Article  MATH  ADS  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  ADS  Google Scholar 

  • Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Discretization error dominance over subgrid-terms in large eddy simulations of compressible shear layers. Comm. Num. Meth. Eng. Math. 10, 785 (1994)

    Article  MATH  Google Scholar 

  • Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geurts, B.J. (2014). Theory and Application of Regularization Modeling of Turbulence. In: Deville, M., Estivalezes, JL., Gleize, V., Lê, TH., Terracol, M., Vincent, S. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43489-5_1

Download citation

Publish with us

Policies and ethics