Skip to main content
  • 73 Accesses

Abstract

Living organisms vary greatly in their life cycles, in the complexity of their development and in their modes of propagation and reproduction. Typically, however, all the varied life cycles include at least one stage in which the organism is represented by a single cell from which there must unfold every subsequent complexity of development including, when the progression has come round to full circle, the production of single cells of that same kind. One single-celled stage, that of the fertilized egg or zygote, is as widespread as the process of sexual reproduction of which indeed it is an integral feature; and although this process may be circumvented in its essentials by apomixis, or even abandoned for vegetative propagation, sexual reproduction is the continuous thread running through the evolutionary history of all plants and animals. The zygote therefore affords a common starting point in considering the problem of differentiation in all types of organisms, plants and animals alike; the problem of how a complex soma can originate and develop from a single cell. At the same time, the fertilized egg is not the only cell from which, especially in plants, complex development may spring, so that we may also look for evidence from parts of the life cycle other than that which turns immediately on the unfolding of the zygote’s potentialities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Arlett, C. F.: Induction of cytoplasmic mutations in Aspergillus nidulans. Nature (Loud.) 179 1250–1251 (1957).

    Article  CAS  Google Scholar 

  • Barber, H. N.: Chromosome behaviour in Uvularia. J. Genet. 42, 223–257 (1941).

    Article  Google Scholar 

  • Beadle, G. W., and V. L. Coonradt: Heterocaryosis in Neurospora crassa. Genetics 29, 291–308 (1944).

    PubMed  CAS  Google Scholar 

  • Beale, G. H.: The genetics of Paramecium aurelia. Cambridge: Univ. Press 1954.

    Google Scholar 

  • Beale, G. H.: The role of the cytoplasm in antigenic determination in Paramecium aurelia. Proc. roy. Soc. B 148, 308–314 (1958).

    CAS  Google Scholar 

  • Beermann, W.: Nuclear differentiation and functional morphology of chromosomes. Cold Spr. Harb. Symp. quant. Biol. 21, 217–232 (1956).

    CAS  Google Scholar 

  • Briault, P. G.: Cytoplasmic changes associated with adaptation and differentiation. Nature (Lond.) 178, 1223–1224 (1956).

    Article  Google Scholar 

  • Briggs, R. L., and T. J. King: Changes in the nuclei of differentiating ectoderm cells as revealed by nuclear transplantation. J. Morph. 100, 269–312 (1957).

    Article  Google Scholar 

  • Brink, R. A.: A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41, 872–889 (1956).

    PubMed  CAS  Google Scholar 

  • Brink, R. A.: Paramutation at the R locus in maize Cold Spr. Harb. Symp. quant. Biol. 23, 379–391 (1958).

    CAS  Google Scholar 

  • Bryson, V., and W. Szybalski: Microbial drug resistance. Advanc. Genet. 7, 1–46 (1955).

    Article  CAS  Google Scholar 

  • Catcheside, D. G.: Genes their nature and function. C. R. Lab. Carlsberg, SĂ©r. physiol. 26, 31–40 (1956).

    Google Scholar 

  • Catcheside, D. G.: Introduction to a discussion on the cytoplasm in variation and development. Proc. roy. Soc. B 148, 285–290 (1958).

    CAS  Google Scholar 

  • Chantrenne, H.: Synthesis of protein and nucleic acid in enucleate cytoplasm. Proc. roy. Soc. B 148, 321–332 (1958).

    Google Scholar 

  • Clauss, H.: Ăśber quantitative Veränderungen der Chloroplasten-und cytoplasmischen Proteine in kernlosen Teilen von Acetabularia mediterranea. Planta (Berl.) 52, 334–350 (1958).

    Article  Google Scholar 

  • Danielli, J. F.: Studies of inheritance in amoebae by the technique of nuclear transfer. Proc. roy. Soc. B 148, 321–331 (1958).

    CAS  Google Scholar 

  • Darlington, C. D.: Recent advances in cytology, 2nd ed. London: Churchill 1937.

    Google Scholar 

  • Darlington, C. D.: Heredity, development and infection. Nature (Lond.) 154, 164–169 (1944).

    Article  CAS  Google Scholar 

  • Darlington, C. D.: Messages and movements in the cell. In: Chromosomes, pp. 199–231. (Lectures held at the Conference on Chromosomes, Wageningen, April 1956.) Zwolle ( Netherlands ): Willink 1957.

    Google Scholar 

  • Darlington, C. D., and K. Mather: The elements of genetics. London: Allen and Unwin 1949.

    Google Scholar 

  • Darlington, C. D., and P. T. Thomas: Morbid mitosis and the activity of inert chromosomes in Sorghum. Proc. roy. Soc. B 130, 127–150 (1941).

    Google Scholar 

  • Demerec, M.: Behaviour of two mutable genes of Delphinium ajacis. J. Genet. 24, 179–193 (1931).

    Article  Google Scholar 

  • Demerec, M.: Unstable genes in Drosophila. Cold. Spr. Harb. Symp. quant. Biol. 9, 145–149 (1941).

    Article  Google Scholar 

  • Demerec, M., and Z. Demerec: Tryptophane mutants in Salmonella typhimurium. Carnegie Inst. Wash. Publ. No 612 (1956).

    Google Scholar 

  • Ephrussi, B.: Nucleo-cytoplasmic relations in micro-organisms Oxford: Clarendon Press 1953.

    Google Scholar 

  • Fin, A., and C. Pavan: Autoradiography of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Nature (Lond.) 180, 983–984 (1957).

    Google Scholar 

  • Hartman, P. E.: Linked loci in the control of consecutive steps in the primary pathway of histidine synthesis in Salmonella typhimurium. Publ. Carnegie Inst. Wash. No 612, 35–61 (1956).

    Google Scholar 

  • Huskins, C. L.: The subdivision of the chromosomes and their multiplication in non-dividing tissues: possible interpretations in terms of gene structure and gene action. Amer. Naturalist 81, 401 434 (1947).

    Google Scholar 

  • Huskins, C. L.: Chromosome multiplication and reduction in somatic tissues. Nature (Lond.) 161, 80–83 (1948).

    Article  CAS  Google Scholar 

  • Jinks, J. L.: Naturally occurring cytoplasmic changes in fungi. C. R. Lab. Carlsberg, SĂ©r. physiol. 26, 183–203 (1956).

    Google Scholar 

  • Jinks, J. L.: Selection for cytoplasmic differences. Proc. roy. Soc. B 146, 527–540 (1957).

    CAS  Google Scholar 

  • Jinks, J. L.: Cytoplasmic differentiation in fungi. Proc. roy. Soc. B 148, 314–321 (1958).

    CAS  Google Scholar 

  • Jinks, J. L.: Selection for adaptibility to new environments in Aspergillus glaucus. J. gen. Microbiol. 20, 223–236 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Kilkenny, B. C., and C. Hinshelwoon: Adaptation and mendelian segregation in the utilisation of galactose by yeast. Proc. roy. Soc. B 139, 73–85 (1951).

    CAS  Google Scholar 

  • King, T. J., and R. L. Briggs: Serial transplantation of embryonic nuclei. Cold. Spr. Harb. Symp. quant. Biol. 21, 271–290 (1956).

    Article  CAS  Google Scholar 

  • Lawrence, W. J. C., and R. Scottmoncrieff: The genetics and chemistry of flower colour in Dahlia: A new theory of specific pigmentation. J. Genet. 30, 155–226 (1935).

    Article  CAS  Google Scholar 

  • Lorz, A. P.: Supernumerary chromonemal reproduction: polytene chromosomes, endormitosis, multiple chromosome complexes, polysomaty. Bot. Rev. 13, 597–624 (1947).

    Article  Google Scholar 

  • Mather, K.: Nucleus and cytoplasm in differentiation. Symp. Soc. exp. Biol. 2, 196–216 (1948a).

    Google Scholar 

  • Mather, K.: The significance of nuclear change in differentiation. Nature (Lond.) 161, 872–874 (1948b).

    Article  CAS  Google Scholar 

  • Mather, K.: Nucleus and cytoplasm in heredity and development. Proc. roy. Soc. B, 148, 362–369 (1958).

    CAS  Google Scholar 

  • Mather, K., and J. L. Jinks: Cytoplasm in sexual reproduction. Nature (Lond.) 182, 1188–1190 (1958).

    Article  CAS  Google Scholar 

  • Mcclintock, B.: Chromosome organisation and genic expression. Cold Spr. Harb. Symp. quant. Biol. 16, 13–48 (1951).

    CAS  Google Scholar 

  • Mcclintock, B.: Intra-nuclear systems controlling genic action and mutation. Brookhaven Symp. Biol. 8, 58–74 (1956).

    Google Scholar 

  • Meda-War, P. B.: Cellular inheritance and transformation. Biol. Rev. 22, 360–389 (1947).

    Article  Google Scholar 

  • Michaelib, P.: Cytoplasmic inheritance in Epilobium and its theoretical significance. Advanc. Genet. 6, 288–401 (1954).

    Google Scholar 

  • Mntzing, A.: Cytological studies of extra fragment chromosomes in rye The mechanism of non-disjunction at the pollen mitosis. Hereditas (Lund) 32, 97–119 (1946).

    Article  Google Scholar 

  • Pollock, M. R.: Enzymic “de-adaptation”: the stability of an acquired character on withdrawal of the external inducing stimulus. Proc. roy. Soc. B 148, 340–352 (1958).

    CAS  Google Scholar 

  • Pontecorvo, G.: New fields in the biochemical genetics of microorganisms. Symp. Biochem. Soc. 4, 40–50 (1950).

    CAS  Google Scholar 

  • Pontecorvo, G.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953).

    Article  CAS  Google Scholar 

  • Pontecorvo, G.: Trends in genetic analysis. New York: Columbia University Press; London: Oxford University Press 1959.

    Google Scholar 

  • Pritchard, R. H.: The linear arrangement of a series of alleles in Aspergillus nidulans. Heredity 9, 343–372 (1955).

    Article  Google Scholar 

  • Rees, H., and J. L. Jinks: The mechanism of variation in Penicillium heterokaryons. Proc. roy. Soc. B 140, 100–106 (1952).

    CAS  Google Scholar 

  • Rhoades, M. M.: Genic induction of an inherited cytoplasmic difference. Proc. nat. Acad. Sci. (Wash.) 29, 327–329 (1943).

    Article  CAS  Google Scholar 

  • Sax, K.: The effect of temperature on nuclear differentiation in microspore development. J. Arnold Arboret. 16, 301–310 (1935).

    Google Scholar 

  • Schultz, J.: Interrelations between nucleus and cytoplasm: problems at the biological level. Exp. Cell. Res. Suppl., 2, 17–43 (1952).

    CAS  Google Scholar 

  • Scott, F. M.: Differentiation of the spiral vessels in Ricins communis. Bot. Gaz. 99, 69–79 (1937).

    Article  Google Scholar 

  • Sharpe, H. S.: A closed system of cytoplasmic variation in Aspergillus glaucus. Proc. roy. Soc. B 148, 355–359 (1958).

    Google Scholar 

  • Sonneborn, T. M.: Beyond the gene two years later. Sci. Progr., Ser. Vii, 167–203 (1951).

    Google Scholar 

  • Patterns of nucleocytoplasmic integration in Paramecium. Proc. 9th Internat. Congr. Genetics. Caryologia, 6, Suppl., 307–325 (1954).

    Google Scholar 

  • Spiegelman, S., and W. F. DE Lorenzo: Substrate stabilisation of enzyme-forming capacity during the segregation of a heterozygote. Proc. nat. Acad. Sci. (Wash.) 38, 583–592 (1952).

    Article  CAS  Google Scholar 

  • Stewart, L. B.: Remarks on the morphology and propagation of Gardenia sp. Trans. bot. Soc. Edinburgh 27, 41–42 (1924).

    Google Scholar 

  • Swanson, C. P.: Cytology and cytogenetics. Englewood Cliffs, N. J.: Prentice-Hall 1957.

    Google Scholar 

  • Waddington, C. H.: An introduction to modern genetics. London: Allen and Unwin 1939.

    Google Scholar 

  • Waddington, C. H.: Principles of embryology. London: Allen and Unwin 1956.

    Google Scholar 

  • Wettstein, F. v.: Morphologie und Physiologie des Formwechsels der Moose auf genetischer Grundlage. Z. indukt. Abstamm.- u. Vererb.-Lehre 33, 1–236 (1924).

    Google Scholar 

  • White, M. J. D.: Animal cytology and evolution. Cambridge: Univ. Press 1945.

    Google Scholar 

  • White, M. J. D.: The cytology of the Cecidomyidae(Diptera). II. The chromosome cycle and anomalous spermatogenesis of Miastor. J. Morph. 79, 323–361 (1946).

    Article  PubMed  CAS  Google Scholar 

  • White, M. J. D.: The spermatogenesis of Taxomyia taxi. J. Morph. 80, 1–22 (1947).

    Google Scholar 

  • Winge, O., and C. Roberts: Inheritance of enzymatic characters in yeast and the phenomenon of long-term adaptation. C. R. Lab. Carlsberg, SĂ©r. physiol. 24, 263–315 (1948).

    Google Scholar 

  • Wright, S.: Genes as physiological agents. Amer. Naturalist 76, 289–303 (1941).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mather, K. (1965). Genes and cytoplasm in development. In: Allsopp, A., et al. Differentiation and Development / Differenzierung und Entwicklung. Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-36273-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-36273-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-35445-2

  • Online ISBN: 978-3-662-36273-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics