Skip to main content

Receptors and Signal Transduction in the Myometrium

  • Conference paper
Basic Mechanisms Controlling Term and Preterm Birth

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 7))

  • 55 Accesses

Abstract

In the myometrium, as in many other smooth muscle preparations, Ca2+ and cAMP, the two major intracellular second messengers, exert opposite effects at the level of contractility. The necessity of calcium for uterine contraction has long been recognized, the role of Ca2+ being obligatory, whether the stimulus is hormonal or voltage-induced. On the other hand, cAMP has been shown to contribute to uterine relaxion (Hardman 1981, Do Khac et al. 1986b, Diamond 1990). The increase in intracellular Ca2+ evoked by stimulatory agonists is considered to originate at least in part from intracellular stores (Van Breemen and Saida 1989; Somlyo and Himpens 1989; Mironneau et al. 1984). In this regard, the phosphoinositide-phospholipase C transducing mechanism that is consistently associated with Ca2+-mobilizing receptors (Berridge and Irvine 1984; Berridge 1987) has been demonstrated to be activated by contracting agonists in different myometrial preparations (Marc et al. 1986, 1988; Anwer et al. 1989; Goureau et al. 1990). Additionally, a number of recently reported findings provide satisfactory correlations between the increased generation of inositol phosphates, the ability of inositol 1,4,5-trisphosphate, InsP(1,4,5,)P3, to release Ca2+ from intracellular stores, and the accompanying Ca2+-induced uterine contractions (Carsten and Miller 1985; Marc et al. 1988;Kanmuraetal. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amiot F, Leiber D, Marc S, Harbon S (1993) GRP-preferring bombesin receptors increase the generation of inositol phosphates and tension in rat myometrium. Am J Physiol (in press)

    Google Scholar 

  • Anwer K, Hovington JA, Sanborn BM (1989) Antagonism of contractants and relaxants at the level of intracellular calcium and phosphoinositide turnover in the rat uterus. Endocrinology 124:2995–3002

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–163

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biochim Biophys Acta 1031:163–224

    Article  PubMed  CAS  Google Scholar 

  • Bousso-Mittler D, Kloog Y, Wollberg Z, Bdolak A, Kochva E, Sokolovsky M (1989) Functional endothelin/sarafatoxin receptors in the rat uterus. Biochem Biophys Res Comm 162:952–957

    Article  PubMed  CAS  Google Scholar 

  • Breuiller-Fouche M, Doualla-Bell Kotto Maka F, Geny F, Ferre F (1991) Alpha-1 adrenergic receptor: binding and phosphoinositide breakdown in human myometrium. J Pharmacol Exp Ther 258:82–87

    PubMed  CAS  Google Scholar 

  • Carsten ME, Miller JD (1985) Ca2+ release by inositol trisphosphate from Ca2+-transporting microsomes derived from uterine sarcoplasmic reticulum. Biochem Biophys Res Comm 130:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA (1987) Methods in prostanoid receptor classification, in prostaglandins and related substances. A practical approach, Eds, IRL Press, Oxford, UK, pp 267–303

    Google Scholar 

  • Coleman RA, Kennedy I, Sheldrick RLG, Tolowinska IY (1987) Further evidence for the existence of three subtypes of PGE2-sensitive (EP-) receptors. Br J Pharmacol 91:407P

    Google Scholar 

  • Crankshaw DJ, Gaspar V (1992) Effects of prostanoids on the rat’s myometrium in vitro during pregnancy. Biol Reprod 46:392–400

    Article  PubMed  CAS  Google Scholar 

  • Diamond J (1990) β-Adrenergic receptor, cyclic AMP and cyclic GMP in control of uterine motility, in Uterine function: Molecular and Cellular Aspects, Carsten E, Miller JD, Eds Plenum, New York, pp 249–275

    Chapter  Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RG (1987) A family of receptors, coupled to guanine nucleotide regulatory proteins. Biochemistry 26:2657–2666

    Article  PubMed  CAS  Google Scholar 

  • Dohlman HG, Thorner J, Caron MC, Lefkowitz RJ (1991) Model systems for the study of seven-transmembranes segment-receptors. Annu Rev Biochem 60:653–688

    Article  PubMed  CAS  Google Scholar 

  • Do Khac L, d’Albis A, Jammot C, Harbon S (1986a) Myosin light chain phosphorylation in intact rat uterine smooth muscle. Role of calcium and cyclic AMP. J Muscle Res Cell Motility 7:259–268

    Article  CAS  Google Scholar 

  • Do Khac L, Mokhtari A, Harbon S (1986b) A re-evaluated role for cyclic AMP in uterine relaxation. Differential effect of isoproterenol and forskolin. J Pharmacol Exp Ther 239:236–242

    PubMed  CAS  Google Scholar 

  • Do Khac L, Mokhtari A, Renner M, Harbon S (1992) Activation of β-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event. Mol Pharmacol 41:509–519

    Google Scholar 

  • Eberhard DA, Holz RW (1988) Intracellular Ca2+ activates phospholipase C. Trends Pharmacol Sci 11:517–521

    CAS  Google Scholar 

  • Goureau O, Tanfin Z, Harbon S (1990) Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant rat myometrium. Biochem J 271: 667–673

    PubMed  CAS  Google Scholar 

  • Goureau O, Tanfin Z, Marc S, Harbon S (1992) Diverse prostaglandin receptors activate distinct signal transduction pathways in rat myometrium. Am J Physiol 263:C257–C265

    Google Scholar 

  • Harbon S, Do Khac L, Vesin MF (1976) Cyclic AMP binding to intracellular receptor proteins in rat myometrium. Effect of epinephrine and prostaglandin E1. Mol Cell Endocrinol 6:17–34

    Article  PubMed  CAS  Google Scholar 

  • Harbon S, Tanfin Z, Leiber D, Vesin MF, Do Khac L (1984) Selective interactions of cyclooxygenase and lipoxygenase metabolites with the cyclic AMP and the cyclic GMP systems in the myometrium. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:639–649

    PubMed  CAS  Google Scholar 

  • Harbon S, Marc S, Goureau O, Tanfin Z, Leiber D, Mokhtari A, Do Khac L (1990) Multiple regulations for the generation of inositol phosphates and cyclic AMP in myometrium. In Uterine Contractility, Garfield RE (ed), Plenum Publishing Co, pp 123–140

    Google Scholar 

  • Hardman JG (1981) Cyclic nucleotides and smooth muscle contraction: some conceptual and experimental considerations, in Smooth Muscle: An assessment of Current Knowledge, Bülbring E, Brading AF, Jones AW, Tomita T (eds) Edward Arnold, London, pp 249–262

    Google Scholar 

  • Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17:383–387

    Article  PubMed  CAS  Google Scholar 

  • Kanmura Y, Missiaen L, Casteels R (1988) Properties of intracellular calcium stores in pregnant rat myometrium. Br J Pharmacol 95:284–290

    Article  PubMed  CAS  Google Scholar 

  • Leiber D, Marc S, Harbon S (1990) Pharmacological evidence for distinct muscarinic receptor subtypes coupled to the inhibition of adenylate cyclase and to the increased generation of inositol phosphates in the guinea pig myometrium. J Pharmacol Exp Ther 252: 800–809

    PubMed  CAS  Google Scholar 

  • Marc S, Leiber D, Harbon S (1986) Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett 201:9–14

    Article  PubMed  CAS  Google Scholar 

  • Marc S, Leiber D, Harbon S (1988) Fluoroaluminates mimic muscarinic-and oxytocin-receptor-mediated generation of inositol phosphates and contraction in the guinea pig myometrium. Biochem J 255: 705–713

    PubMed  CAS  Google Scholar 

  • Milligan G, Tanfin Z, Goureau O, Unson C, Harbon S (1989) Identification of both Gi2 and a novel immunogically distinct form of Go in rat myometrial membranes, FEBS Lett 244: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Mironneau J (1990) Ion channels and excitation-contraction coupling in myometrium, in Uterine contractility, ed. Garfield, Plenum, New York, pp 9–20

    Google Scholar 

  • Mironneau C, Mironneau J, Savineau JP (1984) Maintained contractions of rat uterine smooth muscle incubated in a Ca2+-free solution. Br J Pharmacol 82:735–743

    Article  PubMed  CAS  Google Scholar 

  • Mokhtari A, Do Khac L, Harbon S (1988) Forskolin alters sensitivity of the cAMP-generating system to stimulatory as well as to inhibitory agonists. Eur J Biochem 176:131–137

    Article  PubMed  CAS  Google Scholar 

  • Schultz G, Rosenthal W, Hescheler J, Trautwein W (1990) Role of G proteins in calcium channel modulation. Annu Rev Physiol 52:275–292

    Article  PubMed  CAS  Google Scholar 

  • Senior J, Marshall K, Sangha R, Baxter GS, Clayton JK (1991) In vitro characterization of prostanoid EP-receptors in the non-pregnant human myometrium. Br J Pharmacol. 102:747–753

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Goldsmith PK, Godina J, Unson G, Spiegel AM (1989) Gi2 mediates α2 adrenergic inhibition of adenylate cyclase in platelet membranes: In situ identification with Gα C terminal antibodies. Proc Natl Acad Sci USA, 86:7809–7813

    Article  PubMed  CAS  Google Scholar 

  • Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1991) Regulation of phos-phoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Himpens B (1989) Cell calcium and its regulation in smooth muscle, FASEB J 3:2266–2276

    PubMed  CAS  Google Scholar 

  • Sugimoto Y, Namba T, Honda A, Hayashi Y, Negishi M, Ichikawa A, Narumiya S (1992) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem 267:6463–6466

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1960) The relation of adenosine cyclic 3′,5′-phosphate and Phosphorylase to the actions of catecholamines and other hormones. Pharmacol Rev 12:265–299

    CAS  Google Scholar 

  • Tanfin Z, Harbon S (1987) Heterologous regulations of cAMP responses in pregnant rat myometrium. Evolution from a stimulatory to an inhibitory prostaglandin E2 and prostacyclin effect. Mol Pharmacol 32:249–257

    PubMed  CAS  Google Scholar 

  • Tanfin Z, Goureau O, Milligan G, Harbon S (1991) Characterization of G proteins in rat myometrium. A differential modulation of Gi2α and Gi3α during gestation. FEBS Lett 278:4–8

    Article  PubMed  CAS  Google Scholar 

  • Van Breemen C, Saida K (1989) Cellular mechanisms regulating [Ca2+]i in smooth muscle, Annu Rev Physiol 51:315–329

    Article  PubMed  Google Scholar 

  • Vesin MF, Harbon S (1974) The effects of epinephrine, prostaglandins and their antagonists on adenosine cyclic 3′5′-monophosphate concentrations and motility of the rat uterus. Mol Pharmacol 10:457–473

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

K. Chwalisz R. E. Garfield

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harbon, S., Tanfin, Z., Khac, L.D., Goureau, O., Leiber, D. (1994). Receptors and Signal Transduction in the Myometrium. In: Chwalisz, K., Garfield, R.E. (eds) Basic Mechanisms Controlling Term and Preterm Birth. Ernst Schering Research Foundation Workshop, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21660-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21660-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21662-0

  • Online ISBN: 978-3-662-21660-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics