Skip to main content

Realizing Algebraic Number Fields

  • Chapter
Abelian Group Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1006))

Abstract

In the paper [13], the authors studied the problem of realizing rational division algebras in a special way. Let D be a division algebra that is finite dimensional over the rational field Q. If p is a prime, we say that D is p-realizable when there is a p-local torsion free abelian group A whose rank is the dimension of D over Q, such that D is isomorphic to the quasiendomorphism ring of A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Beaumont and R. S. Pierce, Torsion free rings, Illinois J. Math., 5 (1961), 61–98.

    Google Scholar 

  2. A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., 13 (1963), 687–710.

    Google Scholar 

  3. C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218 (1976), 1–59.

    Google Scholar 

  4. W. Feit, Some consequences of the classification of finite simple groups, Proc. Symp. in Pure Math. 37, Amer. Math. Soc. 1980, 175–181.

    Google Scholar 

  5. M. Hall, Jr., Combinatorial Theory, Ginn-Blaisdell, Waltham, 1967.

    Google Scholar 

  6. G. H. Hardy and E. M. Wright, The Theory of Numbers, Oxford Univ. Press, Oxford, 1960.

    Google Scholar 

  7. D. Hilbert, Uber die Irreduzibilität ganzer rationaler Funktionen mit gangzaligen Koeffizienten, J. fur Reine u. Ang. Math, 110 (1892), 104–129.

    Google Scholar 

  8. T. Hungerford, Algebra, Springer-Verlag, New York, 1964.

    Google Scholar 

  9. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

    Google Scholar 

  10. S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, 1970.

    Google Scholar 

  11. R. S. Pierce, Associative Algebras, Springer-Verlag, New York, 1982.

    Book  Google Scholar 

  12. R. S. Pierce, Subrings of simple algebras, Mich. Math. Jour., 7 (1960), 241–243.

    Google Scholar 

  13. R. S. Pierce and C. Vinsonhaler, Realizing division algebras, Pac. Jour. of Math. (to appear).

    Google Scholar 

  14. I. F. Ritt, On algebraic functions which can be expressed in terms of radicals, Trans. Amer. Math. Soc., 24 (1923), 21–30.

    Article  Google Scholar 

  15. P. Schultz, The endomorphism ring of the additive group of a ring, Jour. Austr. Math. Soc., 15 (1973), 60–69.

    Article  Google Scholar 

  16. I. R. Shafarevitch, Construction of fields of algebraic numbers with given solvable Galois group, Izv. Akad. Nauk. SSSR Ser. Mat., 18 (1954), 525–578.

    Google Scholar 

  17. K.-Y. Shik, On the construction of Galois extensions of function fields and number fields, Math. Ann., 207 (1974), 99–120.

    Article  Google Scholar 

  18. H. Wielandt, Finite Permutation Groups, Academic Press, New York and London, 1964.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pierce, R.S., Vinsonhaler, C.I. (1983). Realizing Algebraic Number Fields. In: Göbel, R., Lady, L., Mader, A. (eds) Abelian Group Theory. Lecture Notes in Mathematics, vol 1006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21560-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21560-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12335-4

  • Online ISBN: 978-3-662-21560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics