Skip to main content

Early Development and Neoplasia

  • Chapter
Signaling and the Cytoskeleton

Abstract

Most of the studies cited in earlier chapters deal with molecular mechanisms of basic cellular processes of relatively homogeneous cell populations. Much of what is significant in biomedical science is concerned with complex, organized cell mixtures: tissues and organs. Thus, it is important to see how the principles we have previously defined apply to such systems. To address some of the questions involved in more complex systems, we have chosen to briefly discuss two topics, early development and neoplasia. In our view these represent two important aspects of multicellularity:

  1. 1)

    the initial and presumably simplest form of the organization of cells; and

  2. 2)

    the failure or reversal of the normal organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonder EM, Fishkind DJ. Actin-membrane cytoskeletal dynamics in early sea urchin development. Curr Top Devel Biol 1995; 31: 101–137.

    Article  CAS  Google Scholar 

  2. Gilbert S. Developmental Biology, 3rd ed., Sinauer Associates, Inc., 1991.

    Google Scholar 

  3. Miyazaki S. Calcium signalling during mammalian fertilization. Ciba Foundation Symp 1995; 188: 235–251.

    CAS  Google Scholar 

  4. Spudich A. Actin organization in the sea urchin egg cortex. Curr Topics Devel Biol 1992; 26: 9–21.

    Article  CAS  Google Scholar 

  5. Louvard D, Kedinger M, Hauri HP. The differentiating intestinal epithelial cell: establishment and maintenance of functions through interactions between cellular structures. Annu Rev Cell Biol 1992; 8: 157–195.

    Article  PubMed  CAS  Google Scholar 

  6. Schejter ED, Wieschaus E. Functional elements of the cytoskeleton in the early Drosophila embryo. Annu Rev Cell Biol 1993; 9: 67–99.

    Article  PubMed  CAS  Google Scholar 

  7. Schultz RM. Regulation of zygotic gene activation in the mouse. BioEssays 1993; 15: 531–538.

    Article  PubMed  CAS  Google Scholar 

  8. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–357.

    Article  PubMed  CAS  Google Scholar 

  9. Watson AJ, Kidder GM, Schultz, GA. How to make a blastocyst. Biochem Cell Biol 1992; 70: 849–855.

    Article  PubMed  CAS  Google Scholar 

  10. Coucouvanis E, Martin GR. Signals for death and survival: a two-site mechanism for cavitation in the vertebrate embryo. Cell 1995; 83: 279–287.

    Article  PubMed  CAS  Google Scholar 

  11. Winkel GK, Ferguson JE, Takeichi M, Nuccitelli R. Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev Biol 1990; 138: 1–15.

    Article  PubMed  CAS  Google Scholar 

  12. Ohsugi M, Yamamura H. Differences in the effects of treatment of uncompacted and compacted mouse embryos with phorbol esters on pre-and postimplantation development. Differentiation 1993; 53: 173–179.

    Article  PubMed  CAS  Google Scholar 

  13. Wiley LM, Adamson ED, Tsark EC. Epidermal growth factor receptor function in early mammalian development. Bio Essays 1995; 17: 839–846.

    CAS  Google Scholar 

  14. Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, Larabell CA. Microtubulemediated transport of organelles and localization of p-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci USA 1997; 94: 1244–1229.

    Article  Google Scholar 

  15. Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.

    Article  PubMed  CAS  Google Scholar 

  16. Wang S, Krinks M, Lin K, Luyten FP, Moos M Jr. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 1997; 88: 757–766.

    Article  PubMed  CAS  Google Scholar 

  17. Leyns L, Bouwmeester, Kim S-H, Picccolo S, De Robertis DM. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997; 88: 747–756.

    Article  PubMed  CAS  Google Scholar 

  18. Hopkin K. Wnt world: a window on gastrulation, development, and cancer. J NIH Res 1997; 9: 21–23.

    Google Scholar 

  19. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a ß-catenin-Tcf complex in APC-colon carcinoma. Science 1997; 275: 1784–1787.

    Article  PubMed  CAS  Google Scholar 

  20. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of 3-catenin-Tcf signaling by mutations in ß-catenin or APC. Science 1997; 275: 1787–1790.

    Article  PubMed  CAS  Google Scholar 

  21. Yisraeli JK, Sokol S, Melton DA. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vgl mRNA. Development 1990; 108: 289–298.

    PubMed  CAS  Google Scholar 

  22. Bassell G, Singer RH. mRNA and cytoskeletal filaments. Curr Opin Cell Biol 1997; 9: 109–115.

    Article  PubMed  CAS  Google Scholar 

  23. Thomsen GH, Melton DA. Processed Vgl protein is an axial mesoderm inducer in Xenopus. Cell 1993; 74: 433–441.

    Article  PubMed  CAS  Google Scholar 

  24. Mowry KL, Melton DA. Vegetal messenger RNA localization directed by a 34ont RNA sequence element in Xenopus oocytes. Science 1992; 255: 991–994.

    Article  PubMed  CAS  Google Scholar 

  25. Pondel MD, King ML. Localized maternal mRNA related to transforming growth factor beta mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. Proc Natl Acad Sci USA 1988; 85: 7612–7616.

    Article  PubMed  CAS  Google Scholar 

  26. Bearer EL. Introduction. Curr. Topics Devel Biol 1992; 26: 1–7.

    Article  CAS  Google Scholar 

  27. Gustafson T, Wolpert L. Studies on the cellular basis of morphogenesis in sea urchin embryos: Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp Cell Res 1961; 24: 64–79.

    Article  PubMed  CAS  Google Scholar 

  28. Fink RD, McClay DR. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 1985; 107: 66–74.

    Article  PubMed  CAS  Google Scholar 

  29. Gustafson T, Wolpert L. Cellular movement and contact in sea urchin morpho-genesis. Biol Rev 1967; 42: 442–498.

    Article  PubMed  CAS  Google Scholar 

  30. Hardin J, McClay DR. Target recognition by the archenteron during sea urchin gastrulation. Dev Biol 1990; 142: 87–105.

    Article  Google Scholar 

  31. Kellie S. Tyrosine Kinases and Neoplastic Transformation. Austin, Texas: R.G. Landes Co., 1994.

    Google Scholar 

  32. Harris H, Miller OJ, Klein G, Worst P, Tachibana T. Suppression of malignancy by cell fusion. Nature 1969; 223: 363–368.

    Article  PubMed  CAS  Google Scholar 

  33. Knudson AG. Antioncogenes and human cancer. Proc Nall Acad Sci USA 1993; 90: 10914–10921.

    Article  CAS  Google Scholar 

  34. Ruddon RW. Cancer Biology, 3rd ed., Oxford, UK: Oxford University Press, 1995.

    Google Scholar 

  35. Levine AJ. The tumor suppressor genes. Annu Rev Biochem 1993; 62: 623–651.

    Article  PubMed  CAS  Google Scholar 

  36. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  37. Carraway CAC, Carraway KL. Interactions of membrane receptors and cell signaling systems with the cytoskeleton. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton. Vol. 2. Greenwich, CT: JAI Press, 1996: 207–238.

    Google Scholar 

  38. Juang S-H, Carvajal ME, Whitney M, Liu Y, Carraway CAC. Tyrosine phosphorylation at the membrane-microfilament interface: A p185“BU-associated signal transduction particle containing Src, Abl and phosphorylated p58, a membrane-and microfilament-associated retroviral Gag-like protein. Oncogene 1996; 12: 1033–1042.

    PubMed  CAS  Google Scholar 

  39. Carraway CAC, Carvajal ME, Li Y, Carraway KL. Association of p185“eLL with microfilaments via a large glycoprotein complex in mammary carcinoma microvilli. Evidence for a microfilament-associated signal transduction particle. J Biol Chem 1993; 268: 5582–5587.

    PubMed  CAS  Google Scholar 

  40. Carraway CAC, Carvajal ME, Carraway KL. Association of the Ras/MAP kinase signal transduction pathway with microfilaments. Evidence for a p185“0LL-containing cell surface signal transduction particle linking the mitogenic pathway to a membrane-microfilament association site. Submitted.

    Google Scholar 

  41. Juang S-H, Huang J, Li Y, Salas PJI, Fregien N, Carraway CAC, Carraway KL. Molecular cloning and sequencing of a 58 kDa membrane-and microfilament-associated protein from ascites tumor cell microvilli with sequence similarities to retroviral Gag proteins. J Biol Chem 1994; 269: 15067–15075.

    PubMed  CAS  Google Scholar 

  42. Liu Y, Carraway KL, Carraway CAC. Isolation and characterization of a 58 kda membrane and microfilament-associated protein from ascites tumor cell microvilli. J Biol Chem 1989; 264: 1208–1214.

    PubMed  CAS  Google Scholar 

  43. Howard SC, Hull SR, Huggins JW, Carraway CAC, Carraway KL. Relationship between xenotransplantability and cell surface properties of ascites sublines of a rat mammary adenocarcinoma. J Nat Cancer Inst 1982; 69: 33–40.

    PubMed  CAS  Google Scholar 

  44. Huang J, Li Y, Mayer B, Carraway KL, Carraway CAC. c-Src association with and phosphorylation of p588 q, a membrane-and microfilament-associated retroviral gag protein. Submitted.

    Google Scholar 

  45. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698.

    Article  PubMed  CAS  Google Scholar 

  46. Carraway KL III, Cantley LC. A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 1994; 78: 5–8.

    Article  PubMed  CAS  Google Scholar 

  47. Carraway KL, Carraway CAC. Signaling, mitogenesis and the cytoskeleton: Where the action is. BioEssays 1995; 17: 171–175.

    Article  PubMed  CAS  Google Scholar 

  48. Peles E, Yarden Y. Neu and its ligands: From an oncogene to neural factors. BioEssays 1993; 15: 815–824.

    Article  PubMed  CAS  Google Scholar 

  49. den Hartigh JC, van Bergen en Henegouwen PMP, Verkleij AJ, Boonstra J. The EGF receptor is an actin-binding protein. J Cell Biol 1992; 119: 349–355.

    Google Scholar 

  50. Defize LHK, Boonstra J, Meisenhelder J, Kruijer W, Tertoolen LGJ, Tilly BC, Hunter T, Van Bergen en Henegouwen PMP, Moolenaar WH, de Laat SW. Signal transduction by epidermal growth factor occurs through the subclass of high affinity receptors. J Cell Biol 1989; 107: 939–949.

    Article  Google Scholar 

  51. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor ß to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with 5(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  PubMed  CAS  Google Scholar 

  52. Golub TR, Goga A, Barker GF, Afar DEH, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996; 16: 4107–4116.

    PubMed  CAS  Google Scholar 

  53. Gutkind JS, Vitale-Cross J. The pathway linking small GTP-binding proteins of the Rho family to cytoskeletal components and novel signaling kinase cascades. Sem Cell Devel Biol 1996; 7: 683–690.

    Article  CAS  Google Scholar 

  54. Renshaw MW, McWhirter JR, Wang JYJ. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation. Mol Cell Biol 1995; 15: 1286–1293.

    PubMed  CAS  Google Scholar 

  55. Daley GQ, van Etten RA, Jackson PK, Bernards A, Baltimore D. Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol Cell Biol 1992; 12: 1864–1871.

    PubMed  CAS  Google Scholar 

  56. Wang JYJ. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr Opin Genet Devel 1993; 3: 35–43.

    Article  CAS  Google Scholar 

  57. Huang J, Li Y, Mayer B, van Etten R, Carraway KL, Carraway CAC. Abl association with and phosphorylation of p 58–86, a membrane-and microfilament-associated retroviral gag protein. Submitted.

    Google Scholar 

  58. Cohen GB, Ren R, Baltimore D. Modular binding domains in signal transduction proteins. Cell 1995; 80: 237–248.

    Article  PubMed  CAS  Google Scholar 

  59. Higley S, Way M. Actin and cell pathogenesis. Curr Opin Cell Biol 1997; 9: 62–69.

    Article  PubMed  CAS  Google Scholar 

  60. Rey I, Hall A. Tumour suppressors and the regulation of GTP-binding protein activity. Trends Cell Biol 1993; 3: 39–42.

    Article  PubMed  CAS  Google Scholar 

  61. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 1994; 369: 411–414.

    Article  PubMed  CAS  Google Scholar 

  62. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  63. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89: 457–467.

    Article  PubMed  CAS  Google Scholar 

  64. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahn M. Rapid induction of heparin-binding epidermal/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev 1995; 9: 1953–1964.

    Article  PubMed  CAS  Google Scholar 

  65. Galisteo ML, Chernoff J, Su Y-C, Skolnik EY, Schlessinger J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pakt J Biol Chem 1996; 271: 20997–21000.

    CAS  Google Scholar 

  66. Michiels F, Habets GGM, Stam JC, van der Kammen RA, Collard JG. A role for Rac in Tiami-induced membrane ruffling and invasion. Nature 1995; 375: 338–340.

    Article  PubMed  CAS  Google Scholar 

  67. Brancolini C, Benedetti M, Schneider C. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J 1995; 14: 5179–5190.

    PubMed  CAS  Google Scholar 

  68. Porter AG, Ng P, Janicke RU. Death substrates come alive. BioEssays 1997; 19: 501–507.

    Article  PubMed  CAS  Google Scholar 

  69. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997; 276: 1571–1574.

    Article  PubMed  CAS  Google Scholar 

  70. Brzeska H, Korn ED. Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 1996; 271: 16983–16986.

    Article  PubMed  CAS  Google Scholar 

  71. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction. Cell 1991; 64: 281–302.

    Article  PubMed  CAS  Google Scholar 

  72. Bryant PJ. Towards the cellular functions of tumour suppressors. Trends Cell Biol 1993; 3: 31–35.

    Article  PubMed  CAS  Google Scholar 

  73. Helin K, Harlow E. The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol 1993; 3: 43–46.

    Article  PubMed  CAS  Google Scholar 

  74. Rotter V, Foord O, Navot N. In search of the functions of normal p53 protein. Trends Cell Biol 1993; 3: 46–49.

    Article  PubMed  CAS  Google Scholar 

  75. Levine A. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  PubMed  CAS  Google Scholar 

  76. Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD. G3-catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 1996; 134: 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  77. Adams JC. Cell adhesion-spreading frontiers, intricate insights. Trends Cell Biol 1997; 7: 107–111.

    Article  PubMed  CAS  Google Scholar 

  78. Hedrick L, Cho KR, Vogelstein B. Cell adhesion molecules as tumour suppressors. Trends Cell Biol 1993; 3: 36–39.

    Article  PubMed  CAS  Google Scholar 

  79. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 1988; 102: 639–655.

    PubMed  CAS  Google Scholar 

  80. Gumbiner BM, McCrea PD. Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl 1993; 17: 155–158.

    PubMed  CAS  Google Scholar 

  81. Birchmeier W, Hulsken J, Behrens J. E-cadherin as an invasion suppressor. Ciba Found Symp 1995; 189: 124–136.

    PubMed  CAS  Google Scholar 

  82. Bracke ME, Van Roy FM, Mareel MM. The E-cadherin/catenin complex in invasion and metastasis. Curr Top Microbiol Immunol 1996; 213: 123–161.

    Article  PubMed  CAS  Google Scholar 

  83. Behrens J. Cell contacts, differentiation, and invasiveness of epithelial cells. Invasion Metastasis 1995; 14: 61–70.

    CAS  Google Scholar 

  84. Ben Ze’ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol 1997; 9: 99–108.

    Article  Google Scholar 

  85. Zetter BR. Adhesion molecules in tumor metastasis. Semin Cancer Biol 1993; 21: 421–929.

    Google Scholar 

  86. Nicolson GL. Transmembrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim Biophys Acta 1976; 457: 57–108.

    Google Scholar 

  87. Meredith JE Jr, Schwartz MA. Integrins, adhesion and apoptosis. Trends Cell Biol 1997; 7: 146–150.

    Article  PubMed  CAS  Google Scholar 

  88. Ben-Ze’ev A. The cytoskeleton in cancer cells. Biochim Biophys Acta 1985; 780: 197–212.

    PubMed  Google Scholar 

  89. Tsukita S, Yonemura S, Tsukita S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 1997; 9: 70–75.

    Article  PubMed  CAS  Google Scholar 

  90. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 1997; 275: 1943–1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Early Development and Neoplasia. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics