Skip to main content

Intracellular Membrane Trafficking, Secretion/Exocytosis and Endocytosis

  • Chapter
Signaling and the Cytoskeleton

Abstract

Organization of cells into compartments (cellular organelles) is necessary to separate synthetic and degradative activities and prevent the cell from degenerating into a series of futile cycles. As indicated in chapter 1, the location and form of many organelles, at least in interphase cells, is regulated by their interactions with microtubules (1, 2). During mitosis, most of the organellar structures are converted to vesicles, then reformed during anaphase; these processes also involve microtubules, as described in chapter 5. During the interphase period of the cell cycle, the intracellular organelles are highly dynamic. A schematic view of the major pathways involved in intracellular membrane trafficking through the organelles is shown in Figure 6.1. The primary pathways are: secretion/exocytosis, in which material produced in the endoplasmic reticulum (ER) is transported to the cell surface for export or incorporation into the plasma membrane; uptake/endocytosis, in which materials are taken from outside the cell, passaged through early (sorting) and/or late (prelysosomal) endosomal compartments and often shunted to the lysosomes for degradation; recycling, endocytosis of plasma membrane into an early endosomal compartment in the cell and back to the plasma membrane for reutilization, often as part of the endocytosis/degradation process; and transcytosis, a variant of recycling in polarized cells in which material and membrane transits from one side of the cell to the other. The cytoskeleton appears to contribute to membrane trafficking in three ways:

  1. 1)

    Cytoskeleton attachments to the plasma membrane, usually microfilaments, can alter membrane properties to facilitate or reduce endocytosis or exocytosis (3).

  2. 2)

    Microtubules can act as struts for maintaining organelle localization and geometries.

  3. 3)

    Microtubules or microfilaments may act as tracks for directed membrane movements (1). These membrane movements depend largely on the activities of a large number of cytoskeleton-associated motor proteins, some of which are indicated in Table 6.1 (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stebbings H. Microtubule-based intracellular transport of organelles. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 113–140.

    Google Scholar 

  2. Pickard JE, Kreis TE. CLIPs for organelle-microtubule interactions. Trends Cell Biol 1996; 6: 178–183.

    Article  Google Scholar 

  3. Sheetz MP, Dai J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 1996; 6: 85–89.

    Article  PubMed  CAS  Google Scholar 

  4. Goodson HV, Valetti C, Kreis TE. Motors and membrane traffic. Curr Opin Cell Biol 1997; 9: 18–28.

    Article  PubMed  CAS  Google Scholar 

  5. Saraste J, Thyberg J. Function of microtubules in protein secretion and organization of the Golgi complex. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 239–273.

    Google Scholar 

  6. Harter C, Wieland F. The secretory pathway: mechanisms of protein sorting and transport. Biochim Biophys Acta 1996; 1286: 75–93.

    Article  PubMed  Google Scholar 

  7. Schekman R, Orci L. Coat proteins and vesicle budding. Science 1996; 271: 1526–1533.

    Article  PubMed  CAS  Google Scholar 

  8. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 272: 227–234.

    Article  PubMed  CAS  Google Scholar 

  9. Fath KR, Burgess DR. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol 1993; 120: 117–127.

    Article  PubMed  CAS  Google Scholar 

  10. Mizuno M, Singer SJ. A possible role for stable microtubules in intra-cellular transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Sci 1994; 107: 1321–1331.

    PubMed  Google Scholar 

  11. Lippincott-Schwartz J. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol 1993; 3: 81–88.

    Article  PubMed  CAS  Google Scholar 

  12. Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri H-P, Yan LC, Klausner RD. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 1990; 60: 821–836.

    Article  PubMed  CAS  Google Scholar 

  13. Lippincott-Schwartz J, Cole NB. Roles for microtubules and kinesin in membrane traffic between the endoplasmic reticulum and the Golgi complex. Biochem Soc Trans 1995; 23: 544–548.

    PubMed  CAS  Google Scholar 

  14. Burgess TL, Kelly RB. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 1987; 3: 243–293.

    Article  PubMed  CAS  Google Scholar 

  15. Singer SJ, Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol 1986; 2: 337–365.

    Article  PubMed  CAS  Google Scholar 

  16. Drenckhahn D, Jons T, Puschel B, Schmitz F. Role of the cytoskeleton in the development of epithelial polarity. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 141–165.

    Google Scholar 

  17. Scheel J, Matteoni R, Ludwig T, Hoflack B, Kreis TE. Microtubule depolymerization inhibits transport of cathepsin D from the Golgi apparatus to lysosomes. J Cell Sci 1990; 96: 711–720.

    PubMed  CAS  Google Scholar 

  18. Prydz K, Hovland KS, Orsen I. The role of microtubules in apical and basolateral endocytosis in epithelial Madin-Darby canine kidney (MDCK) cells. Biochem Soc Trans 1995; 23: 53–56.

    Google Scholar 

  19. Holzbaur ELF, Vallee RB. Dyneins: molecular structure and cellular function. Annu Rev Cell Biol 1994; 10: 339–372.

    Article  PubMed  CAS  Google Scholar 

  20. Haimo LT. Regulation of kinesin-directed movements. Trends Cell Biol 1995; 5: 165–168.

    Article  PubMed  CAS  Google Scholar 

  21. Matthies HJG, Miller RJ, Palfrey HC. Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J Biol Chem 1993; 268: 11176–11187.

    PubMed  CAS  Google Scholar 

  22. Mcllvain JM Jr, Burkhardt JK, Hamm-Alvarez S, Argon Y, Sheetz MP. Regulation of kinesin activity by phosphorylation of kinesin-associated proteins. J Biol Chem 1994; 269: 19176–19182.

    Google Scholar 

  23. Hirokawa N, Sato-Yoshitake R, Yoshida T, Kawashima T. Brain dynein (MAP 1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Biol 1990; 111: 1027–1037.

    Article  PubMed  CAS  Google Scholar 

  24. Dillman JF III, Pfister KK. Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles. J Cell Biol 1994; 127: 1671–1681.

    Article  PubMed  CAS  Google Scholar 

  25. Sato-Yoshitake R, Yorifugi H, Inagaki M, Hirokawa N. The phosphorylation of kinesin regulates its binding to synaptic vesicles. J Biol Chem 1992; 267: 23930–23936.

    PubMed  CAS  Google Scholar 

  26. Brady ST. A kinesin medley: biochemical and functional heterogeneity. Trends Cell Biol 1995; 5: 159 - i64.

    Article  PubMed  CAS  Google Scholar 

  27. Hollenbeck PJ. Phosphorylation of neuronal kinesin heavy and light chains in vivo. J Neurochem 1993; 60: 2265–2275.

    Article  PubMed  CAS  Google Scholar 

  28. Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. Int Rev Cytol 1996; 164: 269–327.

    Article  PubMed  CAS  Google Scholar 

  29. Schroer TA, Bingham JB, Gill SR. Actin-related protein i and cytoplasmic dyneinbased motility-what’s the connection? Trends Cell Biol 1996; 6: 212–215.

    Article  PubMed  CAS  Google Scholar 

  30. Vallee RB, Sheetz MP. Targeting of motor proteins. Science 1996; 271: 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  31. Vale RD, Schnapp BJ, Reese TS, Sheetz MP. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell 1985; 40: 559–569.

    Article  PubMed  CAS  Google Scholar 

  32. Thaler CD, Haimo LT. Regulation of organelle transport in melanophores by calcineurin. J Cell Biol 1990; 111: 1939–1948.

    Article  PubMed  CAS  Google Scholar 

  33. Thaler CD, Haimo LT. Control of organelle transport in melanophores: Regulation of Cap and cAMP levels. Cell Motil Cytoskel 1992; 22: 175–184.

    Article  CAS  Google Scholar 

  34. Fincham VJ, Unlu M, Brunton VG, Pitts JD, Wyke JA, Frame MC. Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G-proteins. J Cell Biol 1996; 135: 1551–1564.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly RB. Secretory granule and synaptic vesicle formation. Curr Opin Cell Biol 1991; 3: 654–660.

    Article  PubMed  CAS  Google Scholar 

  36. Bennett MK, Scheller RH. The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci USA 1993; 90: 2559–2563.

    Article  PubMed  CAS  Google Scholar 

  37. Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. Biochim Biophys Acta 1996; 1286: 117–152.

    Article  PubMed  Google Scholar 

  38. Augustine GJ, Burns ME, DeBello WM, Pettit DL, Schweizer FE. Exocytosis: proteins and perturbations. Annu Rev Pharmacol Toxicol 1996; 36: 659–701.

    Article  PubMed  CAS  Google Scholar 

  39. Liu J-P, Robinson PJ. Dynamin and endocytosis. Endocrin Rev 1995; 16: 590–607.

    CAS  Google Scholar 

  40. Burgoyne RD, Morgan A. Regulated exocytosis. Biochem J 1993; 293: 305–316.

    PubMed  CAS  Google Scholar 

  41. Muallem S, Kwiatkowska K, Xu X, Yin HL. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 1995; 128: 589–598.

    Article  PubMed  CAS  Google Scholar 

  42. Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim Biophys Acta 1994; 1197: 63–93.

    Article  PubMed  CAS  Google Scholar 

  43. Roth D, Burgoyne RD. Stimulation of catecholamine secretion from adrenal chromaffin cells by 14–3–3 proteins is due to reorganisation of the cortical actin network. FEBS Lett 1995; 374: 77 – 81.

    Article  PubMed  CAS  Google Scholar 

  44. Norman JC, Price LS, Ridley AJ, Koffer A. The small GTP-binding proteins, Rac and Rho, regulate cytoskeletal organization and exocytosis in mast cells by parallel pathways. Mol Biol Cell 1996; 7: 1429–1442.

    PubMed  CAS  Google Scholar 

  45. Valtorta F, Benfenati F. Protein phosphorylation and the control of exocytosis in neurons. Ann New York Acad Sci 1994; 710: 347–355.

    Article  CAS  Google Scholar 

  46. Walent JH, Porter BW, Martin TFJ. A novel 145 kd branin cytosolic protien reconstitutes Cap’-regulated secretion in permeable neuroendocrine cells. Cell 1992; 70: 765–775.

    Article  PubMed  CAS  Google Scholar 

  47. Seethaler G, Tooze S, Shields D. Fusion and confusion in the secretory pathway. Trends Cell Biol 1996; 6: 239–242.

    Article  PubMed  CAS  Google Scholar 

  48. Prekeris R, Mayhew MW, Cooper JB, Terrian DM. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol 1996; 132: 77–90.

    Google Scholar 

  49. Lamaze C, Schmid SL. The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995; 7: 573–580.

    Article  PubMed  CAS  Google Scholar 

  50. Robinson MS. The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol 1994; 6: 538–544.

    Article  PubMed  CAS  Google Scholar 

  51. Sorkin A, Waters CM. Endocytosis of growth factor receptors. BioEssays 1993; 15: 375–382.

    Article  PubMed  CAS  Google Scholar 

  52. Damke H. Dynamin and receptor-mediated endocytosis. FEBS Let 1996; 389: 48–51.

    Article  CAS  Google Scholar 

  53. Warnock DE, Schmid SL. Dynamin GTPase, a force-generating molecular switch. BioEssays 1996; 18: 885–893.

    Article  PubMed  CAS  Google Scholar 

  54. Shpetner HS, Herskovits JS, Vallee RB. A binding site for SH3 domains targets dynamin to coated pits. J Biol Chem 1996; 271: 13–16.

    Article  PubMed  CAS  Google Scholar 

  55. Wang Z, Moran MF. Requirement for the adaptor protein GRB2 in EGF receptor endocytosis. Science 1996; 272: 1935–1939.

    Article  PubMed  CAS  Google Scholar 

  56. Riezman H. Yeast endocytosis. Trends Cell Biol 1993; 3: 273–277.

    Article  PubMed  CAS  Google Scholar 

  57. Gottlieb TA, Ivanov IE, Adesnik M, Sabatini DD. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120: 695–710.

    Article  PubMed  CAS  Google Scholar 

  58. Kubler E, Riezman H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 1993; 12: 2855–2862.

    PubMed  CAS  Google Scholar 

  59. Munn AL, Stevenson BJ, Geli MI, Riezman H. ends, end6 and end7: Mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 1995; 6: 1721–1742.

    PubMed  CAS  Google Scholar 

  60. Mulholland J, Preuss D, Moon A, Wong A, Drubin D. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 1994; 125: 381–391.

    Article  PubMed  CAS  Google Scholar 

  61. Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA. Synthetic lethality screen identifies a novel yeast myosin I gene (MY05): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 1996; 133: 1277–1291.

    Article  PubMed  CAS  Google Scholar 

  62. Geli MI, Riezman H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 1996; 272: 533–535.

    Article  PubMed  CAS  Google Scholar 

  63. Oda H, Stockert RJ, Collins C, Wang H, Novikoff PM, Salir P, Wolkoff AW. Interaction of the microtubule cytoskeleton with endocytic vesicles and cytoplasmic dynein in cultured rat hepatocytes. J Biol Chem 1995; 270: 15242–15249.

    Article  PubMed  CAS  Google Scholar 

  64. Lamaze C, Schmid SL. Recruitment of epidermal growth factor receptor and transferrin receptors in vitro into coated pits: differing biochemical requirements. Mol Biol Cell 1993; 4: 715–727.

    PubMed  CAS  Google Scholar 

  65. Lamaze C, Schmid SL. Recruitment of epidermal growth factor receptor into coated pits requires their activated tyrosine kinase. J Cell Biol 1995; 129: 47–54.

    Article  PubMed  CAS  Google Scholar 

  66. Wells A, Welsh JB, Lazar CS, Wiley HS, Gill GN, Rosenfeld MG. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 1990; 247: 962–964.

    Article  PubMed  CAS  Google Scholar 

  67. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257.

    Article  PubMed  CAS  Google Scholar 

  68. Cohen S, Fava R. Internalization of functional epidermal growth factor:receptor tyrosine kinase complexes in A431 cells. J Biol Chem 1985; 260: 12351–12358.

    PubMed  CAS  Google Scholar 

  69. Viera AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrinmediated endocytosis. Science 1996; 274: 2086–2089.

    Article  Google Scholar 

  70. Carpentier JL, Paccaud JP. Molecular and cellular biology of insulin-receptor internalization. Ann NY Acad Sci 1994; 733: 266–278.

    Article  PubMed  CAS  Google Scholar 

  71. Biener Y, Feinstein R, Mayak M, Kaburagi Y, Kadowaki T, Zick Y. Annexin II is a novel player in insulin signal transduction. Possible association between anexin II phosphorylation and insulin receptor internalization. J Biol Chem 1996; 271: 29489–29496.

    Article  PubMed  CAS  Google Scholar 

  72. Rasenick MM, Caron MG, Dolphin AC, Kobilka BK, Schultz G. In: Pharmacological Sciences: Perspectives for Research and Therapy in the Late 199os. Cuello AC, Collier B, eds., Basel, Switzerland: Burkhauser Verlag, 1995: 91–103.

    Chapter  Google Scholar 

  73. Zhang J, Ferguson SSG, Barak LS, Menard L, Caron MG. Dynamin and p-arrestin reveal distinct mechanisms for G-protein-coupled receptor internalization. J Biol Chem 1996; 271: 18302–18305.

    Article  PubMed  CAS  Google Scholar 

  74. Anderson RGW. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol 1993; 5: 647–652.

    Article  PubMed  CAS  Google Scholar 

  75. Parton RG, Simons K. Digging into caveolae. Science 1995; 269: 1398–1399.

    Article  PubMed  CAS  Google Scholar 

  76. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolinrich membrane domains: a signalling hypothesis. Trends Cell Biol 1994; 4: 231–235.

    Article  PubMed  CAS  Google Scholar 

  77. Deckert M, Ticchioni M, Bernard A. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J Cell Biol 1996; 133: 791–799.

    Article  PubMed  CAS  Google Scholar 

  78. Li S, Couet J, Lisanti MP. Src tyrosine kinases, GaPha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. J Biol Chem 1996; 271: 29182–29190.

    Article  PubMed  CAS  Google Scholar 

  79. Smart EJ, Ying Y-S, Anderson RGW. Hormonal regulation of caveolae internalization. J Cell Biol 1995; 131: 929–938.

    Article  PubMed  CAS  Google Scholar 

  80. Anderson RGW, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992; 255: 410–411.

    Article  PubMed  CAS  Google Scholar 

  81. Anderson RGW. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 1993; 90: 10909–10913.

    Article  PubMed  CAS  Google Scholar 

  82. Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol 1994; 127: 1199–1215.

    Article  PubMed  CAS  Google Scholar 

  83. Izumi T, Shibata Y, Yamamoto T. Striped structures on the cytoplasmic surface membranes of the endothelial vesicles of the rat aorta revealed by quick-freeze, deep-etching replicas. Anat Rec 1988; 220: 225–232.

    Article  PubMed  CAS  Google Scholar 

  84. Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol 1995; 5: 424–428.

    Article  PubMed  CAS  Google Scholar 

  85. Ridley AJ. Membrane ruffling and signal transduction. BioEssays 1994; 16: 321–327.

    Article  PubMed  CAS  Google Scholar 

  86. Novak KD, Peterson MD, Reedy MC, Titus MA. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 1995; 131: 1205–1221.

    Article  PubMed  CAS  Google Scholar 

  87. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol 1995; 5: 86–88.

    Article  Google Scholar 

  88. Swanson JA, Baer SC. Phagocytosis by zippers and triggers. Trends Cell Biol 1995; 5: 89–93.

    Article  PubMed  CAS  Google Scholar 

  89. Isberg RR, Nhieu GTV. The mechanism of phagocytic uptake promoted by invasinintegrin interaction. Trends Cell Biol 1995; 5: 120–124.

    Article  PubMed  CAS  Google Scholar 

  90. Brown EJ. Phagocytosis. BioEssays 1995; 17: 109–117.

    Article  PubMed  CAS  Google Scholar 

  91. Jones SL, Brown EJ. FcyRII-mediated adhesion and phagocytosis induce L-plastin phosphorylation in human neutrophils. J Biol Chem 1996; 271: 14623–14630.

    Article  PubMed  CAS  Google Scholar 

  92. Allen LA, Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J Exper Med 1996; 184: 627–637.

    Article  CAS  Google Scholar 

  93. Greenberg S. Signal transduction of phagocytosis. Trends Cell Biol 1995; 5: 93–99.

    Article  PubMed  CAS  Google Scholar 

  94. De Camilli P, Emr SD, McPherson PS, Novick P. Phosphoinositides as regulators in membrane traffic. Science 1996; 271: 1533–1539.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Intracellular Membrane Trafficking, Secretion/Exocytosis and Endocytosis. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics