Skip to main content

Cell Cycle and Cell Division

  • Chapter
Signaling and the Cytoskeleton

Abstract

Cell division is the most complex process undertaken by a single cell and must be stringently regulated to maintain fidelity of reproduction. Proliferative cells are in a continuous loop or cycle composed of four stages: S, during which DNA synthesis occurs, M (mitosis), G1 and G2. The gap phases G1 and G2 are growth and regulatory periods which are required to assure fidelity of the synthetic and division processes, as illustrated in Figure 5.1 (1). Gi is required for most cell types to complete cell growth. A critical checkpoint in G1, called START in yeast or the restriction point in mammalian cell, is the point in the cycle at which the cell commits to DNA replication (2). Both positive and negative signals operate at this point to determine whether the cell continues through the cycle (3). G2 is necessary to assure that DNA synthesis is complete to initiate mitosis and can be extended if DNA replication is incomplete or DNA has been damaged. In the rapidly dividing cells of early embryogenesis following fertilization, the cell cycle and G1 are short because no cell growth is required (4). Much of the research on the cell cycle has been done in unicellular eukaryotic organisms, particularly yeast. Control of the cell cycle in the unicellular organism is relatively simple because their cellular requirements are simple. They respond primarily to cues concerning nutrition and proliferation. In contrast, cells of multicellular organisms must be regulated by the overall needs of the organism. Thus, many cell types are required to be in a quiescent state (Go) most of their life. Other cell types are transiently proliferative and undergo cycles of cell growth and cell death according to the needs of the organism. Multicellular organisms have therefore evolved a highly complex set of mechanisms for regulating the cell cycle, which must then be integrated with all of the processes involved in cell growth and division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 1995; 17: 471–480.

    PubMed  CAS  Google Scholar 

  2. Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 1996; 8: 805–814.

    PubMed  CAS  Google Scholar 

  3. Hunter T, Pines J. Cyclins and cancer: cyclin D and cdk inhibitors come of age. Cell 1994; 79: 573–582.

    Google Scholar 

  4. Kirschner M. The cell cycle then and now. Trends Biochem Sci 1992; 17: 281–285.

    PubMed  CAS  Google Scholar 

  5. Sherr CJ. G1 phase progression: cycling on cue. Cell 1994; 79: 551–555.

    PubMed  CAS  Google Scholar 

  6. Pines J. Protein kinases and cell cycle control. Sem Cell Biol 1994; 5: 399–408.

    CAS  Google Scholar 

  7. Coleman TR, Dunphy WG. Cdc2 regulatory factors. Curr Opin Cell Biol 1994; 6: 877–882.

    PubMed  CAS  Google Scholar 

  8. Sherr CJ, Roberts JM. Inhibitors of mammalian G, cyclin-dependent kinases. Genes Devel 1995; 9: 1149–1163.

    PubMed  CAS  Google Scholar 

  9. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1828.

    Google Scholar 

  10. Wittenberg C, Reed SI. Plugging it in: signaling circuits and the yeast cell cycle. Curr Opin Cell Biol 1996; 8: 223–230.

    Google Scholar 

  11. Chant J. Cell polarity in yeast. Trends in Genetics 1994; 10: 328–333.

    PubMed  CAS  Google Scholar 

  12. Assoian RK, Zhu X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 1997; 9: 93–98.

    PubMed  CAS  Google Scholar 

  13. Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994; 77: 477–478.

    Google Scholar 

  14. Peters G. The D-type cyclins and their role in tumorigenesis. J Cell Sci 1994; (Supp1)18:89–96.

    Google Scholar 

  15. Polyak K, Lee M, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27K’P’, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78:59-66.

    Google Scholar 

  16. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. p27KnN, a cyclin-cdk inhibitor, links transforming growth factor-I3 and contact inhibition to cell cycle arrest. Genes Devel 1994; 8: 9–22.

    PubMed  CAS  Google Scholar 

  17. Graves LM, Lawrence JC Jr. Insulin, growth factors and cAMP: antagonism in the signal transduction pathways. Trends Endocrin Metab 1996; 7: 43–50.

    CAS  Google Scholar 

  18. Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK. Adhesion-dependent cell cycle progression linked to the expression of cyclin Di, activation of cyclin Ecdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 1996; 133: 391–403.

    PubMed  CAS  Google Scholar 

  19. Schulze A, Thome-Zerfass K, Berges J, Middendorp S, Jansen-Durr P, Henglein B. Anchorage-dependent transcription of the cyclin A gene. Mol Cell Biol 1996; 16: 4632–4638.

    PubMed  CAS  Google Scholar 

  20. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E. Dependence of cyclin Ecdk2 kinase activity on cell anchorage. Science 1996; 271: 499–502.

    PubMed  CAS  Google Scholar 

  21. Jalink K, Hordijk PL, Moolenaar WH. Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim Biophys Acta 1994; 1198: 185–196.

    PubMed  Google Scholar 

  22. Bretscher A. Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol 1991; 7: 337–374.

    PubMed  CAS  Google Scholar 

  23. Craig SW, Johnson RP. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol 1996; 8: 74-85.

    Google Scholar 

  24. Yamada K, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995; 7: 681–689.

    PubMed  CAS  Google Scholar 

  25. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 1994; 5: 967–975.

    PubMed  CAS  Google Scholar 

  26. Bohmer RM, Scharf E, Assoian RK. Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin Di. Mol Biol Cell 1996; 7: l01–111.

    Google Scholar 

  27. Ingber DE, Prusty D, Sun Z, Betensky H, Wang N. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomechanics 1996; 28: 1471–1480.

    Google Scholar 

  28. Boyd J, Risinger JI, Wiseman RW, Merrick BA, Selkirk JK, Barrett JC. Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proc Natl Acad Sci USA 1995; 92: 11534–11538.

    PubMed  CAS  Google Scholar 

  29. Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Ze’ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol 1993; 122: 1285–1294.

    Google Scholar 

  30. Rodriguez Fernandez JL, Geiger B, Salomon D, Sabanay I, Zoller M, Ben-Ze’ev A. Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA. J Cell Biol 1992; 119: 427–438.

    Google Scholar 

  31. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac and cdc42 GTPases in cell cycle progression through Gi. Science 1995; 269: 1270–1272.

    PubMed  CAS  Google Scholar 

  32. Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A. Rac and cdc42 induce actin polymerization and Gi cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996; 87: 519–529.

    PubMed  CAS  Google Scholar 

  33. Joneson T, McDonough M, Bar-Sagi D, Van Aelst L. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 1996; 2741374–1376.

    Google Scholar 

  34. Leung T, Chen X-Q, Manser E, Lim L. The p16o RhoA-binding kinase ROK is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16: 5313–5327.

    PubMed  CAS  Google Scholar 

  35. Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional trans-membrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.

    Google Scholar 

  36. Juliano R. Cooperation between soluble factors and integrin-mediated cell anchorage in the control of cell growth and differentiation. BioEssays 1996; 18: 911–917.

    PubMed  CAS  Google Scholar 

  37. Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 1995; 17229–236.

    Google Scholar 

  38. LaFlamme SE, Auer KL. Integrin signaling. Sem. Cancer Biol. 1996; 7: 111–118.

    Google Scholar 

  39. Pasqualini R, Hemler ME. Contrasting roles for integrins pi and ß5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J Cell Biol 1994; 125447–460.

    Google Scholar 

  40. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    PubMed  CAS  Google Scholar 

  41. Rosales C, O’Brien V, Kornberg L, Juliano R. Signal transduction by cell adhesion receptors. Biochim Biophys Acta 1995; 124277–98.

    Google Scholar 

  42. Chen Q, Lin TH, Der CJ, Juliano RL. Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras. J Biol Chem 1996; 271: 18122–18127.

    PubMed  CAS  Google Scholar 

  43. Carraway KL, Carraway CAC. Signaling, mitogenesis and the cytoskeleton: Where the action is. BioEssays 1995; 17: 171–175.

    PubMed  CAS  Google Scholar 

  44. Devary Y, Rosette C, DiDonato JA, Karin M. NF-xB activation by ultraviolet light not dependent on a nuclear signal. Science 1993; 261:1442-1445.

    Google Scholar 

  45. Qwarnstrom EE, Ostberg CO, Turk GL, Richardson CA, Bomsztyk, K. Fibronectin attachment activates the NF-x13 P5o/p65 heterodimer in fibroblasts and smooth muscle cells. J Biol Chem 1994; 269: 30765–30768.

    Google Scholar 

  46. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87: 733–748.

    PubMed  CAS  Google Scholar 

  47. Zachary I, Rozengurt E. Focal adhesion kinase (p125F“K): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 1992; 71: 891–894.

    PubMed  CAS  Google Scholar 

  48. Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 1994; 6: 705–710.

    PubMed  CAS  Google Scholar 

  49. Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science 1994; 266: 1576–1578.

    PubMed  CAS  Google Scholar 

  50. Ouwens DM, Mikkers HMM, van der Zon GC, Stein-Gerlach M, Ullrich A, Maassen JA. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D. Biochem J 1996; 318: 609–614.

    PubMed  CAS  Google Scholar 

  51. Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JYJ. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci USA 1996; 93: 15174–15179.

    PubMed  CAS  Google Scholar 

  52. Wang JYJ. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr Opin Genet Dev 1993; 3: 35–43.

    PubMed  CAS  Google Scholar 

  53. Welch LJ, Wang JYJ. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 1993; 75: 779–790.

    PubMed  CAS  Google Scholar 

  54. Watson, PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J 1991; 5: 2013–2019.

    PubMed  CAS  Google Scholar 

  55. Morris CE. Mechanosensitive ion channels. J Membr Biol 1990; 113: 93-107.

    Google Scholar 

  56. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Science 1993; 104: 613–627.

    PubMed  Google Scholar 

  57. Ingber DE. Integrins as mechanochemical transducers. Curr Opin Cell Biol 1991; 3: 841–848.

    PubMed  CAS  Google Scholar 

  58. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims S, Wang N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 1994; 150: 173–224.

    PubMed  CAS  Google Scholar 

  59. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Nail Acad Sci USA 1997; 94: 849–854.

    CAS  Google Scholar 

  60. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    PubMed  CAS  Google Scholar 

  61. Raff MC. Social controls on cell survival and cell death. Nature 1992; 356:397-400.

    Google Scholar 

  62. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Google Scholar 

  63. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1456.

    PubMed  CAS  Google Scholar 

  64. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui P-Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134:793-799.

    Google Scholar 

  65. Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382: 511–517.

    PubMed  CAS  Google Scholar 

  66. Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, Bartek J, Eilers M. Identification of a Myc-dependent step during the formation of active G, cyclin-cdk complexes. EMBO J 1995; 14: 4814–4826.

    PubMed  CAS  Google Scholar 

  67. Blagosklonny MV, Giannakakou P, El-Deiry WS, Kingston DGI, Higgs PI, Neckers L, Fojo T. Raf-1/bc1–2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 1997; 57: 130–135.

    PubMed  CAS  Google Scholar 

  68. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    PubMed  CAS  Google Scholar 

  69. Dyson N. pRB, p1o7 and the regulation of the E2F transcription factor. J Cell Science 1994; (Suppl)18:81–87.

    Google Scholar 

  70. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 1993; 262: 1572–1575.

    Google Scholar 

  71. Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem 1992; 61: 441–470.

    PubMed  CAS  Google Scholar 

  72. King RW, Jackson PK, Kirschner MW. Mitosis in transition. Cell 1994; 79: 563–571.

    PubMed  CAS  Google Scholar 

  73. Glover DM, Ohkura H, Tavares A. Polo kinase: the choreographer of the mitotic stage. J Cell Biol 1996; 135: 1681–1684.

    PubMed  CAS  Google Scholar 

  74. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, 3rd ed. Chap. 18, New York: Garland Publishing.

    Google Scholar 

  75. Nigg EA. Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 1993; 5: 187–193.

    PubMed  CAS  Google Scholar 

  76. Inoue S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995; 6: 1619–1640.

    PubMed  CAS  Google Scholar 

  77. Sanger JW, Sanger JM. The cytoskeleton and cell division. Meth Achiev Exp Pathol 1979; 8: 110–142.

    CAS  Google Scholar 

  78. Verde F, Labbe J-c, Doree M, Karsenti E. Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 1990; 343: 233–238.

    PubMed  CAS  Google Scholar 

  79. Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84: 623–631.

    PubMed  CAS  Google Scholar 

  80. Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J 1996; 15: 5290–5298.

    PubMed  CAS  Google Scholar 

  81. Ookata K, Hisanaga S, Okumura E, Kishimoto T. Association of P34cdci/cyclin B complex with microtubules in starfish oocytes. J Cell Sci 1993; 105: 873–881.

    PubMed  CAS  Google Scholar 

  82. Ookata K, Hisanaga S, Bulinski JC, Murofushi H, Aizawa H, Itoh TJ, Hotani H, Okumura E, Tachibana K, Kishimoto T. Cyclin B interaction with microtubuleassociated protein 4 (MAP4) targets P34cd“ kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 1995; 128: 849–862.

    PubMed  CAS  Google Scholar 

  83. Mori A, Aizawa H, Saido T, Kawasaki H, Mizumo K, Murofushi H, Suzuki K, Sakai H. Site-specific phosphorylation by protein kinase C inhibits assembly-promoting activity of microtubule-associated protein 4. Biochem 1991; 30: 9341–9346.

    CAS  Google Scholar 

  84. Blangy A, Lane HA, d’Herin P, Harper M, Kress M, Nigg EA. Phosphorylation by P34`d“ regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995; 83: 1159–1169.

    PubMed  CAS  Google Scholar 

  85. Vaisberg EA, Koonce MP, McIntosh JR. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol 1993; 123: 849–858.

    PubMed  CAS  Google Scholar 

  86. Holzbauer ELF, Vallee RB. Dyneins: molecular structure and cellular function. Annu Rev Cell Biol 1994; 10: 339–372.

    Google Scholar 

  87. Gallant P, Fry AM, Nigg EA. Protein kinases in the control of mitosis: focus on nucleocytoplasmic trafficking. J Cell Sci 1995; (Suppl)19:21–28.

    Google Scholar 

  88. Bradbury EM. Reversible histone modification and the chromosome cell cycle. BioEssays 1992; 14: 9–16.

    PubMed  CAS  Google Scholar 

  89. Ohsumi K, Katagiri C, Kishimoto T. Chromosome condensation in Xenopus mitotic extracts without histone Hi. Science 1993; 262: 2033–2035.

    PubMed  CAS  Google Scholar 

  90. Earnshaw WC, Mackay AM. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J 1994; 8: 947–956.

    PubMed  CAS  Google Scholar 

  91. Earnshaw WC, Flute AF. Mitosis. BioEssays 1994; 16: 639–643.

    CAS  Google Scholar 

  92. Cardenas ME, Gasser SM. Regulation of topoisomerase II by phosphorylation: a role for casein kinase II. J Cell Sci 1993; 194: 219–225.

    Google Scholar 

  93. Wells NJ, Fry AM, Guano F, Norbury C, Hickson ID. Cell cycle phase-specific phosphorylation of human topoisomerase II. Evidence of a role for protein kinase C J Biol Chem 1995; 270: 28357–28363.

    CAS  Google Scholar 

  94. Saitoh N, Goldberg I, Earnshaw WC. The SMC proteins and the coming of age of the chromosome scaffold hypothesis. BioEssays 1995; 17: 759–766.

    Google Scholar 

  95. Hirano T, Mitchison TJ, Swedlow JR. The SMC family: from chromosome condensation to dosage compensation. Curr Opin Cell Biol 1995; 7:329-336.

    Google Scholar 

  96. Inagaki M, Matsuoka Y, Tsujimura K, Ando S, Tokui T, Takahashi T, Inagaki N. Dynamic property of intermediate filaments: regulation by phosphorylation. BioEssays 1996; 18: 481–487.

    CAS  Google Scholar 

  97. Foisner R. Dynamic organisation of intermediate flaments and associated proteins during the cell cycle. BioEssays 1997; 19: 297–305.

    Google Scholar 

  98. Gerace L, Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 1980; 19: 277–287.

    PubMed  CAS  Google Scholar 

  99. Takai Y, Ogawara M, Tomono Y, Moritoh C, Imajoh-Ohmi S, Tsutsumi W, Taketani Y, Inagaki M. Mitosis-specific phosphorylation of vimentin by protein kinase C coupled with reorganization of intracellular membranes. J Cell Biol 1996; 133: 141–149.

    PubMed  CAS  Google Scholar 

  100. Foisner R, Malecz N, Dressel N, Stadler C, Wiche G. M-phase-specific phosphorylation and structural rearrangement of the cytoplasmic cross-linking protein plectin involve p34°1°’ kinase. Mol Biol Cell 1996; 7:273-288.

    Google Scholar 

  101. Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC. The centromere: hub of chromosomal activities. Science 1995; 2701591–1594.

    Google Scholar 

  102. Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 1993; 73: 621–624.

    PubMed  CAS  Google Scholar 

  103. Ault JG, Rieder CL. Centrosome and kinetochore movement during mitosis. Curr Opin Cell Biol 1994; 6: 41–49.

    PubMed  CAS  Google Scholar 

  104. Hyman AA, Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 1996; 84: 401–410.

    PubMed  CAS  Google Scholar 

  105. Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 1994; 124: 223–233.

    PubMed  CAS  Google Scholar 

  106. Liao H, Li G, Yen TJ. Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 1994; 265394–398.

    Google Scholar 

  107. Brinkley BR, Ouspenski I, Zinkowski RP. Structure and molecular organization of hte centromere-kinetochore complex. Trends Cell Biol 1992; 2: 15–21.

    PubMed  CAS  Google Scholar 

  108. Warren G. Membrane partitioning during cell division. Annu Rev Biochem 1993; 62: 323–348.

    PubMed  CAS  Google Scholar 

  109. Lucocq J, Warren G, Pryde J. Okadaic acid induces Golgi apparatus fragmentation and arrest of intracellular transport. J Cell Science 1991; 100:753-759.

    Google Scholar 

  110. Lucocq J. Mimicking mitotic Golgi disassembly using okadaic acid. J Cell Science 1992; 103: 875–880.

    PubMed  CAS  Google Scholar 

  111. Wells WAE. The spindle-assembly checkpoint: aiming for a perfect mitosis, every time. Trends Cell Biol 1996; 6: 228–234.

    PubMed  CAS  Google Scholar 

  112. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol 1994; 6: 872–876.

    PubMed  CAS  Google Scholar 

  113. Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 1996; 274: 246–248.

    PubMed  CAS  Google Scholar 

  114. Chen R-H, Waters JC, Salmon ED, Murray AW. Association of spindle assembly XMAD2 with unattached kinetochores. Science 1996; 274: 242–246.

    PubMed  CAS  Google Scholar 

  115. Hardwick KG, Murray, AW. Madip, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 1995; 131: 709–720.

    PubMed  CAS  Google Scholar 

  116. Hardwick KG, Weiss E, Luca FC, Winey M, Murray, AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273: 953–956.

    PubMed  CAS  Google Scholar 

  117. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274: 1664–1671.

    PubMed  CAS  Google Scholar 

  118. Holloway SL, Glotzer, King RW, Murray AW. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 1993; 73: 1393–1402.

    PubMed  CAS  Google Scholar 

  119. King RW, Deshaies RJ, Peters J-M, Kirschner MW. How proteolysis drives the cell cycle. Science 1996; 274: 1652–1659.

    PubMed  CAS  Google Scholar 

  120. Gorbsky GJ. Chromosome motion in mitosis. BioEssays 1992; 14: 73–80.

    Google Scholar 

  121. Dinsmore JH, Sloboda RD Calcium and calmodulin-dependent phosphorylation of a 62 kD protein induces microtubule depolymerization in sea urchin mitotic apparatuses. Cell1988; 53: 769–783.

    Google Scholar 

  122. Moore JD, Endow SA. Kinesin proteins: a phylum of motors for microtubulebased motility. BioEssays 1996; 18: 207–219.

    PubMed  CAS  Google Scholar 

  123. Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. Int Rev Cytol 1996; 164: 269–327.

    PubMed  CAS  Google Scholar 

  124. Wilson KL, Wiese C. Reconstituting the nuclear envelope and endoplasmic reticulum in vitro. Sem Cell Devel Biol 1996; 7: 487–496.

    Google Scholar 

  125. Saraste J, Thyberg J. (1996). In: Treatise on the Cytoskeleton. Hesketh HE, Pryme IF, eds. Greenwich, CT: JAI Press, 239–273.

    Google Scholar 

  126. Barr FA, Warren G. Disassembly and reassembly of the Golgi apparatus. Sem Cell Devel Biol 1996; 7: 505–510.

    Google Scholar 

  127. Jung E, Fucini, P, Stewart M, Noegel AA, Schleicher M. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 1996; 15: 1238–1246.

    PubMed  CAS  Google Scholar 

  128. Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G. Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 1994; 124405–413.

    Google Scholar 

  129. Rappaport R. Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol 1986; 105: 245–281.

    PubMed  CAS  Google Scholar 

  130. Cao L-g, Wang Y-1. Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell 1996; 7: 225–232.

    Google Scholar 

  131. Margolis RL, Andreassen PR. The telophase disc: its possible role in mammalian cell cleavage. BioEssays 1993; 15: 201–207.

    PubMed  CAS  Google Scholar 

  132. Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 1991; l0: 1245–1254.

    CAS  Google Scholar 

  133. Chant J. Septin scaffolds and cleavage planes in Saccharomyces. Cell 1996; 84: 187–190.

    PubMed  CAS  Google Scholar 

  134. Longtine MS, DeMarini DJ, Valencik ML, Al-Awar OS, Fares H, De Virgilio C, Pringle JR. The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 1996; 8: 106–119.

    PubMed  CAS  Google Scholar 

  135. Chant J. Generation of cell polarity in yeast. Curr Opin Cell Biol 1996; 8: 557-565.

    Google Scholar 

  136. Sanders SL, Field CM. Cell division. Septins in common. Curr Biol 1994; 4: 907-910.

    Google Scholar 

  137. Fishkind DJ, Wang Y-1. New horizons for cytokinesis. Curr Opin Cell Biol 1995; 7: 23–31.

    Google Scholar 

  138. Maciver SK. Myosin II function in non-muscle cells. BioEssays 1996; 18: 179–182.

    Google Scholar 

  139. Brown SS. Myosins in yeast. Curr Opin Cell Biol 1997; 9:44-48.

    Google Scholar 

  140. Balasubramanian MK, Hirani BR, Burke JD, Gould KL. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J Cell Biol 1994; 125: 1289–1302.

    PubMed  CAS  Google Scholar 

  141. Moon AL, Janmey PA, Louie KA, Drubin DG. Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol 1993; 120:421-435.

    Google Scholar 

  142. Welch MD, Nallavarapu A, Rosenblatt J, Mitchison TJ. Actin dynamics in vivo. Curr Opin Cell Biol 1997; 9: 54–61.

    Google Scholar 

  143. Balasubramanian MK, Helfman DM, Hemmingsen SM. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 1992; 360: 84–87.

    PubMed  CAS  Google Scholar 

  144. Hosoya N, Hosoya H, Yamashiro S, Mohri H, Matsumura F. Localization of caldesmon and its dephosphorylation during cell division. J Cell Biol 1993; 121: 1075–1082.

    PubMed  CAS  Google Scholar 

  145. Yamashiro S, Yoshida K, Yamakita Y, Matsumura F. Caldesmon: possible functions in microfilament reorganization during mitosis and cell transformation. Actin: Biophysics, Biochemistry, and Cell Biology. In: Estes, JE and Higgins PJ, eds. New York: Plenum Press, 1994: 113–122.

    Google Scholar 

  146. Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol triphosphate levels. Nature 1994; 368: 875–878.147.

    Google Scholar 

  147. Liu T, Williams JG, Clarke M. Inducible expression of calmodulin antisense RNA in Dictyostelium cells inhibits the completion of cytokinesis. Mol Biol Cell 1992; 3: 1403–1413.

    Google Scholar 

  148. Mabuchi I. Regulation of cytokinesis in animal cells-possible involvement of protein phosphorylation. Biomed Res 1993; 14: 155–159.

    Google Scholar 

  149. Satterwhite LL, Lohka MJ, Wilson KL, Scherson TY, Cisek LJ, Corden JL, Pollard TD. Phosphorylation of myosin-II regulatory light chain by cyclin-p34cd’: a mechanism for the timing of cytokinesis. J Cell Biol 1992; 118: 595–605.

    PubMed  CAS  Google Scholar 

  150. Larochelle DA, Epel D. Myosin heavy chain dephosphorylation during cytokine-sis in dividing sea urchin embryos. Cell Motil Cytskel 1993; 25: 369–380.

    Google Scholar 

  151. Egelhoff TT, Lee RJ, Spudich JA. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 1993; 75:363-371.

    Google Scholar 

  152. Brzeska H, Korn ED. Regulation of class I and clsass II myosins by heavy chain phosphorylation. J Biol Chem 1996; 271: 16983–16986.

    PubMed  CAS  Google Scholar 

  153. Song K, Mach KE, Chen C-Y, Reynolds T, Albright CF. A novel suppressor of rasi in fission yeast, byr4, is a dosage-dependent inhibitor of cytokinesis. J Cell Biol 1996; 133: 1307–1319.

    Google Scholar 

  154. Emoto K, Kobayashi T, Yamaji A, Yahara I, Inoue K, Umeda M. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc Natl Acad Sci USA 1996; 93: 12867–12872.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Cell Cycle and Cell Division. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics