Skip to main content

Cell Adhesion and Motility

  • Chapter
Signaling and the Cytoskeleton

Abstract

One of the defining characteristics of living organisms and cells is movement. At the cellu-lar level motility can be defined as directed shape changes. As described in chapter 1, cell shape depends on two factors, adhesion and the cytoskeleton. Thus, cells move by a cycle which is initiated with a cytoskeleton-dependent protrusive activity (1). This protrusion defines the direction of movement, sometimes in response to some extracellular force such as an attractant. Directionality is set through formation of adhesions by the protrusive element (Fig. 4.1) (2). Translo cation of the cell then occurs through contractile and detachment phases, and the cycle is set to repeat. One of the important lessons in studying cell motility, illustrated in Figure 4.2, is that there are wide variations in motility among different types of cells. However, the fundamental molecular mechanisms appear similar in most cases, so the differences may reside in the organization and control of those mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stossel TP. The machinery of blood cell movements. Blood 1994; 84:367-379.

    Google Scholar 

  2. Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996; 84:371-379.

    Google Scholar 

  3. Stossel TP. On the crawling of animal cells. Science 1993; 260: 1086–1094.

    PubMed  CAS  Google Scholar 

  4. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996; 84: 359–369.

    PubMed  CAS  Google Scholar 

  5. Huttenlocher A, Ginsberg MH, Horwitz, AF. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol 1996; 134: 1551–1562.

    PubMed  CAS  Google Scholar 

  6. Condeelis J. Life at the leading edge: the formation of cell protrusions. Annu Rev Cell Biol 1993; 9: 411–444.

    PubMed  CAS  Google Scholar 

  7. Oliver T, Lee J, Jacobson K. Forces exerted by locomoting cells. Sem Cell Biol 1994; 5: 139–147.

    CAS  Google Scholar 

  8. Sheetz MP. Cell migration by graded attachment to substrates and contraction. Sem Cell Biol 1994; 51149–155.

    Google Scholar 

  9. Sheetz MP, Wayne DB, Pearlman AL. Extension of filopodia by motor-dependent actin assembly. Cell Motil Cytoskel 1992; 22: 160–169.

    CAS  Google Scholar 

  10. Gingell D. Contact signalling and cell motility. Symp Soc Exper Biol 1993; 47: 1–33.

    Google Scholar 

  11. Ostap EM, Pollard TD. Overlapping functions of myosin-I isoforms? J Cell Biol 1996; 133: 221–224.

    Google Scholar 

  12. Fath KR, Burgess DR. Membrane motility mediated by unconventional myosin. Curr Opin Cell Biol 1994; 6: 131–135.

    PubMed  CAS  Google Scholar 

  13. Novak KD, Peterson MD, Reedy MC, Titus MA. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 1995; 131: 1205–1221.

    PubMed  CAS  Google Scholar 

  14. Wang F-S, Wolenski JS, Cheney RE, Mooseker MS, Jay DG. Function of myosin-V in filopodial extension of neuronal growth cones. Science 1996; 273: 660–663.

    PubMed  CAS  Google Scholar 

  15. Small JV. Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Sem Cell Biol 1994; 5: 157–163.

    CAS  Google Scholar 

  16. Theriot JA, Mitchison TJ. Actin microfilament dynamics in locomoting cells. Nature 1991; 352: 126–131.

    PubMed  CAS  Google Scholar 

  17. Zigmond SH. Signal transduction and actin filament organization. Curr Opin Cell Biol 1996; 8: 66–73.

    PubMed  CAS  Google Scholar 

  18. Luna EJ, Hitt A. Cytoskeleton-plasma membrane interactions. Science 1992; 258: 955–964.

    PubMed  CAS  Google Scholar 

  19. Cunningham CC, Stossel TP, Kwiatkowski DJ. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 1991; 251: 1233–1236.

    PubMed  CAS  Google Scholar 

  20. Cox D, Condeelis J, Wessels D, Soll D, Kern H, Knecht D. Targeted disruption of the ABP-12o gene leads to cells with altered motility. J Cell Biol 1992; 116: 943–955.

    PubMed  CAS  Google Scholar 

  21. Tsukita S, Yonemura S, Tsukita S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 1997; 9: 7o - 75.

    Google Scholar 

  22. Martin M, Andreoli C, Sahuquet A, Montcourrier P, Algrain M, Mangeat P. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J Cell Biol 1995; 128: 1081–1093.

    PubMed  CAS  Google Scholar 

  23. Bassell G, Singer RH. mRNA and cytoskeletal filaments. Curr Opin Cell Biol 1997; 9: 109–115.

    PubMed  CAS  Google Scholar 

  24. Bretscher MS. Moving membrane up to the front of migrating cells. Cell 1996; 85: 465–467.

    PubMed  CAS  Google Scholar 

  25. Bergmann JE, Kupfer A, Singer SJ. Membrane insertion at the leading edge of motile fibroblasts. Proc Natl Acad Sci USA 1983; 80: 1367–1371.

    PubMed  CAS  Google Scholar 

  26. Lee J, Ishihara A, Jacobson K. How do cells move along surfaces? Trends Cell Biol 1993; 3366–37o.

    Google Scholar 

  27. Theriot JA. Regulation of the actin cytoskeleton in living cells. Sem Cell Biol 1994; 5: 193–199.

    CAS  Google Scholar 

  28. Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.

    PubMed  CAS  Google Scholar 

  29. Lim L, Hall C, Monfries C. Regulation of actin cytoskeleton by Rho-family GTPases and their associated proteins. Sein. Cell Devel Biol 1996; 7: 699–706.

    CAS  Google Scholar 

  30. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89: 457–467.

    PubMed  CAS  Google Scholar 

  31. Erickson JW, Zhang C-j, Kahn RA, Evans T, Cerione RA. Mammalian cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem 1996; 271: 26850–26854.

    PubMed  CAS  Google Scholar 

  32. Ridley AJ. Membrane ruffling and signal transduction. BioEssays 1994; 16: 321–327.

    PubMed  CAS  Google Scholar 

  33. Ridley AJ, Hall A. Signal transduction pathways regulating rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 1994; 13: 260o - 261o.

    Google Scholar 

  34. Chen P, Murphy-Ullrich JE, Wells A. A role for gelsolin in actuating EGF receptor-mediated cell motility. J Cell Biol 1996; 134: 689–698.

    PubMed  CAS  Google Scholar 

  35. Witke W., Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 1995; 81: 41–51.

    PubMed  CAS  Google Scholar 

  36. Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP. Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995; 82: 643–653.

    PubMed  CAS  Google Scholar 

  37. Symons M, Derry JMJ, Kartak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A. Wiskott-Aldrich Syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996; 84: 723–734.

    PubMed  CAS  Google Scholar 

  38. Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in PIP,-dependent manner downstream of tyrosine kinases. EMBO J 1996; 15: 5326–5335.

    PubMed  Google Scholar 

  39. Abercrombie M, Heaysman J, Pegrum SM. The locomotion of fibroblasts in culture. Exp Cell Res 1971; 67: 359–367.

    PubMed  CAS  Google Scholar 

  40. Turner CE, Burridge K. Transmembrane molecular assemblies in cell-extracellular matrix interactions. Curr Opin Cell Biol 1991; 3: 849–853.

    PubMed  CAS  Google Scholar 

  41. Burridge K, Fath K, Kelly T, Nuckolls G, Turner, C. Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell Biol 1988; 4: 487–525.

    PubMed  CAS  Google Scholar 

  42. Lo SH, Chen LB. Focal adhesion as a signal transduction organelle. Cancer Metas Rev 1994; 13: 9–24.

    CAS  Google Scholar 

  43. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    PubMed  CAS  Google Scholar 

  44. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995; 11549–599.

    Google Scholar 

  45. Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 1993; 5: 819–831.

    PubMed  CAS  Google Scholar 

  46. Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional trans-membrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.

    PubMed  CAS  Google Scholar 

  47. Wu C, Keivens VM, O’Toole TE, McDonald JA, Ginsberg MH. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 1995; 83: 715–724.

    PubMed  CAS  Google Scholar 

  48. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463–519.

    PubMed  CAS  Google Scholar 

  49. Plopper G, Ingber DE. Rapid induction and isolation of focal adhesion complexes. Biochem Biophys Res Commun 1993; 193: 571–578.

    PubMed  CAS  Google Scholar 

  50. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995; 6: 1349–1365.

    PubMed  CAS  Google Scholar 

  51. Johnson RP, Craig SW. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 1995; 373: 261–264.

    PubMed  CAS  Google Scholar 

  52. Soderling TR. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem 1990; 265: 1823–1826.

    PubMed  CAS  Google Scholar 

  53. Isenberg G. New concepts for signal perception and transduction by the actin skeleton at cell boundaries. Sem Cell Devel Biol 1996; 7: 707–715.

    CAS  Google Scholar 

  54. Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidylinositol-4,5-bisphosphate. Nature 1996; 381: 531–535.

    PubMed  CAS  Google Scholar 

  55. Craig SW, Johnson RP. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol 1996; 8: 74–85.

    PubMed  CAS  Google Scholar 

  56. Yamada K, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995; 7: 681–689.

    PubMed  CAS  Google Scholar 

  57. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131: 791–805.

    PubMed  CAS  Google Scholar 

  58. Ridley AJ. Signal transduction through the GTP-binding proteins Rac and Rho. J Cell Sci 1994; (Suppl)18:127–131.

    Google Scholar 

  59. Symons M. Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 1996; 21: 178–181.

    PubMed  CAS  Google Scholar 

  60. Hotchin NA, Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol 1995; 131: 1857 1865.

    Google Scholar 

  61. Reif K, Nobes CD, Thomas G, Hall A, Cantrell DA. Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol 1996; 6: 1445–1455.

    PubMed  CAS  Google Scholar 

  62. Lopez-Ilasaca M, Crespo P, Pillici PG, Gutkind JS, Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 1997; 275: 394–397.

    PubMed  CAS  Google Scholar 

  63. Peppelenbosch MP, Qiu R-G, De Vries-Smits AMM, Tertoolen LGJ, de Laat SW, McCormick F, Hall A, Symons MH, Bos JL. Rac mediates growth factor-induced arachidonic acid release. Cell 1995; 81: 849–856.

    PubMed  CAS  Google Scholar 

  64. Maher PA, Pasquale EB, Wang JY, Singer SJ. Phosphotyrosine containing proteins are concentrated in focal adhesions and intercellular junctions in normal cells. Proc Nat Acad Sci USA 1985; 82: 6576–6580.

    PubMed  CAS  Google Scholar 

  65. Nobes CD, Hawkins P, Stephens L, Hall A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci 1994; 108: 225–233.

    Google Scholar 

  66. Rosales C, O’Brien V, Kornberg L, Juliano R. Signal transduction by cell adhesion receptors. Biochim Biophys Acta 1995; 1242: 77–98.

    PubMed  Google Scholar 

  67. Parsons JT, Schaller MD, Hildebrand J, Leu T-H, Richardson A, Otey C. Focal adhesion kinase: structure and signalling. J Cell Sci 1994; (Supp1)18:109-n3.

    Google Scholar 

  68. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    PubMed  CAS  Google Scholar 

  69. Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 1995; 17229–236.

    Google Scholar 

  70. Gilmore AP, Romer LH. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell 1996; 7: 1209–1224.

    PubMed  CAS  Google Scholar 

  71. Ilic D, Kanazawa S, Furuta Y, Yamamoto T, Aizawa S. Impairment of mobility in endodermal cells by FAK deficiency. Exp Cell Res 1996; 222: 298–303.

    PubMed  CAS  Google Scholar 

  72. Richardson A, Parsons JT. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125F“K. Nature 1996; 38o: 538–540.

    Google Scholar 

  73. Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 1996; 135Œ109–1123.

    Google Scholar 

  74. Turner CE. Paxillin, a cytoskeletal target for tyrosine kinases. BioEssays 1994; 16: 47–52.

    PubMed  CAS  Google Scholar 

  75. Han J-D, Rubin CS. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Yi adrenal cells. J Biol Chem 1996; 271: 29211–29215.

    Google Scholar 

  76. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino M, Redeva G, Filmus J, Bell J, Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new pi-integrin-linked protein kinase. Nature 1996; 379: 91–96.

    PubMed  CAS  Google Scholar 

  77. Leung T, Chen X-Q, Manser E, Lim L. The pi6o RhoA-binding kinase ROK is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16: 5313–5327.

    PubMed  CAS  Google Scholar 

  78. LaFlamme SE, Auer KL. Integrin signaling. Sem. Cancer Biol. 1996; 7: 111–118.

    CAS  Google Scholar 

  79. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507–513.

    PubMed  CAS  Google Scholar 

  80. Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86–92.

    PubMed  CAS  Google Scholar 

  81. Auer KL, Jacobson BS. 13, integrins signal lipid second messengers required during cell adhesion. Mol Biol Cell 1995; 61305–1313.

    Google Scholar 

  82. Woods A, Couchman JR. Protein kinase C involvement in focal adhesion formation. J Cell Sci 1992; 101: 277–29o.

    PubMed  CAS  Google Scholar 

  83. Lewis JM, Cheresh DA, Schwartz MA. Protein kinase C regulates Œv(35-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol 1996; 134: 1323–1332.

    PubMed  CAS  Google Scholar 

  84. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133: 1403–1415.

    PubMed  CAS  Google Scholar 

  85. Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bahler M. A novel type of myosin implicated in signaling by rho family GTPases. EMBO J 1995; 14: 697–704.

    PubMed  CAS  Google Scholar 

  86. Bahler M. Myosins on the move to signal transduction. Crit Opin Cell Biol 1996; 8: 18–22.

    Google Scholar 

  87. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science 1996; 273: 245–248.

    PubMed  CAS  Google Scholar 

  88. Nagata K, Hall A. The rho GTPase regulates protein kinase activity. BioEssays 1996; 18: 529–531.

    CAS  Google Scholar 

  89. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275: 1308–1311.

    PubMed  CAS  Google Scholar 

  90. Kolodney MS, Elson EL. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Nail Acad Sci USA 1995; 92: 10252–10256.

    CAS  Google Scholar 

  91. Crowley E, Horwitz AF. Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions. J Cell Biol 1995; 131: 525–537.

    PubMed  CAS  Google Scholar 

  92. Small JV. Microfilament-based motility in non-muscle cells. Curr Opin Cell Biol 1989; 1: 75–79.

    PubMed  CAS  Google Scholar 

  93. Brundage RA, Fogarty KE, Tuft RA, Fay FS. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 1991; 254703–706.

    Google Scholar 

  94. Morris CE. Mechanosensitive ion channels. J Membr Biol 1990; 113: 93–107.

    PubMed  CAS  Google Scholar 

  95. Hartwig JH, Shevin P. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol 1986; 103: 1007–1020.

    PubMed  CAS  Google Scholar 

  96. Stossel TP. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem 1989; 264: 18261–18264.

    PubMed  CAS  Google Scholar 

  97. Anderson KI, Wang YL, Small JV. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J Cell Biol 1996; 134: 1209–1218.

    PubMed  CAS  Google Scholar 

  98. Jay PY, Pham PA, Wong SA, Elson EL. A mechanical function of myosin II in cell motility. J Cell Sci 1995; 108: 387–393.

    PubMed  CAS  Google Scholar 

  99. Lawson MA, Maxfield FR. Ca’ +- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1994; 377: 75–79.

    Google Scholar 

  100. Diaz-Nido J, Ulloa L, Sanchez C, Avila J. The role of the cytoskeleton in the morphological changes occurring during neuronal differentiation. Sem Cell Devel Biol 1996; 7: 733–739.

    CAS  Google Scholar 

  101. Tanaka E, Sabry J. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 1995; 83: 171–176.

    PubMed  CAS  Google Scholar 

  102. Williams EJ, Furness J, Walsh FS, Doherty P. Activation of the FGF receptor underlies neurite outgrowth stimulated by Li, N-CAM, and N-cadherin. Neuron 1994; 13: 583–594.

    PubMed  CAS  Google Scholar 

  103. Doherty P, Williams EJ, Walsh FS. A soluble chimeric form of the Li glycoprotein stimulates neurite outgrowth. Neuron 1995; 14: 57–66.

    PubMed  CAS  Google Scholar 

  104. Garrity PA, Rao Y, Salecker I, McGladie J, Pawson T, Zipursky SL. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 1996; 85: 639–650.

    PubMed  CAS  Google Scholar 

  105. Bixby JL, Jhabvala P. Tyrosine phosphorylation in early embryonic growth cones. J Neurosci 1993; 133421–3432.

    Google Scholar 

  106. Ruoslahti E, Obrink B. Common principles in cell adhesion. Exp Cell Res 1996; 227: 1–11.

    PubMed  CAS  Google Scholar 

  107. Gertler FB, Hill KK, Clark MJ, Hoffman FM. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev 1993; 7: 441–453.

    PubMed  CAS  Google Scholar 

  108. Desai CJ, Gindhart JG Jr, Goldstein LSB, Zinn K. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 1996; 84: 599–609.

    PubMed  CAS  Google Scholar 

  109. Krueger NX, Vactor DV, Wan HI, Gelbart WM, Goodman CS, Saito H. The trans-membrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 1996; 84: 611–622.

    PubMed  CAS  Google Scholar 

  110. Tigyi G, Fischer DJ, Sebok A, Yang C, Dyer DL, Miledi R. Lysophosphatidic acid-induced neurite retraction in PC1z cells: control by phosphoinositide-Ca“ signaling and Rho. J Neurochem 1996; 66: 537–548.

    PubMed  CAS  Google Scholar 

  111. Lin C-H, Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 1995; 14: 763–771.

    PubMed  CAS  Google Scholar 

  112. Fan J, Mansfield SG, Redmond T, Gordon-Weeks PR, Raper JA. The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 1993; 121: 867–878.

    PubMed  CAS  Google Scholar 

  113. Sydor AM, Su AL, Wang F-S, Xu A, Jay DG. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 1996; 134: 1197–1207.

    PubMed  CAS  Google Scholar 

  114. Challacombe JF, Snow DM, Letourneau PC. Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J Cell Science 1995; 109: 2031–2040.

    Google Scholar 

  115. Lin C-H, Forscher P. Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 1993; 121: 1369–1383.

    PubMed  CAS  Google Scholar 

  116. Goslin K, Birgbauer E, Banker G, Solomon F. The role of the cytoskeleton in organizing growth cones: a microfilament-associated growth cone component depends upon microtubules for its localization. J Cell Biol 1989; 109: 1621–1631.

    PubMed  CAS  Google Scholar 

  117. Devreotes PN, Zigmond SH. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Ann Rev Cell Biol 1988; 4: 649–686.

    PubMed  CAS  Google Scholar 

  118. Zigmond SH. Consequences of chemotactic peptide receptor modulation for leukocyte orientation. J Cell Biol 1981; 88: 644–647.

    PubMed  CAS  Google Scholar 

  119. Parent CA, Devreotes PN. Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 1996; 65: 411–440.

    PubMed  CAS  Google Scholar 

  120. van Haastert PJM. Transduction of the chemotactic cAMP signal across the plasma membrane of Dictyostelium cells. Experientia 1995; 51: 1144–1154.

    PubMed  Google Scholar 

  121. Newell PC, Liu G. Streamer F mutants and chemotaxis of Dictyostelium. BioEssays 1992; 14: 473–479.

    PubMed  CAS  Google Scholar 

  122. Browning DD, The T, O’Day DH. Comparative analysis of chemotaxis in Dictyostelium using a radial bioassay method: protein tyrosine kinase activity is required for chemotaxis to folate but not to cAMP. Cell Signal 1995; 7: 481–489.

    PubMed  CAS  Google Scholar 

  123. Gerisch G, Albrecht R, De Hostos E, Wallraff E, Heizer C, Kreitmeier M, MullerTaubenberger A. Actin-associated proteins in motility and chemotaxis. Symp Soc Exp Biol 1993; 47: 297–315.

    PubMed  CAS  Google Scholar 

  124. Noegel AA, Luna JE. The Dictyostelium cytoskeleton. Experientia 1995; 51: 1135–1143.

    PubMed  CAS  Google Scholar 

  125. Abu-Elneel K, Karchi M, Ravid S. Dictyostelium myosin II is regulated during chemotaxis by a novel protein kinase C. J Biol Chem 1996; 271: 977–984.

    PubMed  CAS  Google Scholar 

  126. Dembinsky A, Rubin H, Ravid S. Chemoattractant-mediated increases in cGMP induce changes in Dictyostelium myosin II heavy chain-specific protein kinase C activities. J Cell Biol 1996; 134: 911–921.

    PubMed  CAS  Google Scholar 

  127. Edwards SW. Biochemistry and Physiology of the Neutrophil. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  128. Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood 1995; 86: 1649–1660.

    PubMed  CAS  Google Scholar 

  129. Downey GP, Fukushima T, Fialkow L, Waddell TK. Intracellular signaling in neutrophil priming and activation. Sem Cell Biol 1995; 6: 345–356.

    CAS  Google Scholar 

  130. Edwards SW. Cell signalling by integrins and immunoglobulin receptors in primed neutrophils. Trends Biochem Sci. 1995; 20: 362–367.

    PubMed  CAS  Google Scholar 

  131. Bokoch GM, Knaus UG. The role of small GTP-binding proteins in leukocyte function. Curr Opin Immunol 1994; 6: 98–105.

    PubMed  CAS  Google Scholar 

  132. Klotz K-N, Jesaitis AJ. Neutrophil chemoattractant receptors and the membrane skeleton. BioEssays 1994; 16: 193–198.

    PubMed  CAS  Google Scholar 

  133. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425–434.

    PubMed  CAS  Google Scholar 

  134. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272: 6o - 66.

    Google Scholar 

  135. Ager A. Lymphocyte recirculation and homing: roles of adhesion molecules and chemoattractants. Trends Cell Biol 1994; 4: 326–333.

    PubMed  CAS  Google Scholar 

  136. McEver RP. Selectins. Curr Opin Immunol 1994; 6: 75–84.

    PubMed  CAS  Google Scholar 

  137. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996; 88: 3259–3287.

    PubMed  CAS  Google Scholar 

  138. Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via a-actinin: receptor positioning in microvilli does not require interaction with a-actinin. J Cell Biol 1995; 129: 1155–1164.

    PubMed  CAS  Google Scholar 

  139. Brenner B, Gulbins E, Schlottmann K, Koppenhoefer U, Busch GL, Walzog B, Steinhausen M, Coggeshall KM, Linderkamp O, Lang F. L-selectin activates the Ras pathway via the tyrosine kinase p561 ’. Proc Natl Acad Sci USA 1996; 93: 1537615381.

    Google Scholar 

  140. Yoshida M, Westlin WF, Wang N, Ingber DE, Rosenzweig A, Resnick N, Gimbrone MA Jr. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J Cell Biol 1996; 133: 445–455.

    PubMed  CAS  Google Scholar 

  141. Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev 1982; 62: 185–261.

    PubMed  CAS  Google Scholar 

  142. Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994; 6: 695–704.

    PubMed  CAS  Google Scholar 

  143. Williams MJ, Du X, Loftus JC, Ginsberg MH. Platelet adhesion receptors. Sem Cell Biol 1995; 6: 305–314.

    CAS  Google Scholar 

  144. Du X, Harris SJ, Tetaz TA, Ginsberg MH, Berndt MC. Association of a phospholipase A2 (14–3–3 protein) with the platelet glycoprotein Ib–IX complex. J Biol Chem 1994; 269: 18287 – 18290.

    PubMed  CAS  Google Scholar 

  145. Shattil SJ. Regulation of platelet anchorage and signaling by integrin allblIII,. Thromb Haemostas 1993; 70: 224–228.

    CAS  Google Scholar 

  146. van Santen GH, de Graaf S, Heijnen HFG, Connolly TM, de Groot PG, Sixma JJ. Increased platelet deposition on atherosclerotic coronary arteries. J Clin Invest 1994; 93: 615–632.

    Google Scholar 

  147. Furman MI, Gardner TM, Goldschmidt-Clermont PJ. Mechanisms of cytoskeletal reorganization during platelet activation. Thromb Haemostas 1993; 70: 229–232.

    CAS  Google Scholar 

  148. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068.

    PubMed  CAS  Google Scholar 

  149. Hung DT, Wong YH, Vu TKH, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992; 267: 20831–20834.

    PubMed  CAS  Google Scholar 

  150. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–357.

    PubMed  CAS  Google Scholar 

  151. Calvete JJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/ííía complex. Thromb Haemostas 1994; 72: 1–15.

    CAS  Google Scholar 

  152. O’Toole TE, Mandelman D, Forsyth J, Shattil SJ, Plow EF, Ginsberg MH. Modulation of the affinity of integrin allbp3 (GPIIb-ííía) by the cytoplasmic domain of IIb. Science 1991; 254: 845–857.

    PubMed  Google Scholar 

  153. Shattil S, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, GinsbergMH. p3-Endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin 133 subunit. J Cell Biol 1995; 131: 807–816.

    PubMed  CAS  Google Scholar 

  154. Morii N, Teru-uchi T, Tominaga T, Kumagai N, Kozaki S, Ushibubi F, Narimiya S. A rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem 1992; 267: 20921–20926.

    PubMed  CAS  Google Scholar 

  155. van Willigen G, Hers I, Gorter G, Akkerman, J-WN. Exposure of ligand-binding sites on platelet integrin aaa/p3 subunit. Biochem J 1996; 314: 769–779.

    PubMed  Google Scholar 

  156. Kovacsovics TJ, Bachelot C, Toker A, Vlahos, CJ. Duckworth B, Cantley LC, Hartwig JH. Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets but reverses platelet aggregation. J Biol Chem 1995; 270: 11358–11366.

    PubMed  CAS  Google Scholar 

  157. Chacko GW, Brand JT, Coggeshall KM, Anderson CL. Phosphoinositide 3-kinase and p72’Yk noncovalently associated with the low affinity FC receptor on human platelets through an immunoreceptor tyrosine-based activation motif. Reconstitution with synthetic phosphopeptides. J Biol Chem 1996; 271: 10775–10781.

    PubMed  CAS  Google Scholar 

  158. Fox JEB. The platelet cytoskeleton. Thromb. Haemostas. 1993; 70: 884–893.

    CAS  Google Scholar 

  159. Fox JEB, Boyles JK, Berndt MC, Steffen PK, Anderson LK. Identification of a membrane skeleton in platelets. J Cell Biol 1988; 106: 1525–1538.

    PubMed  CAS  Google Scholar 

  160. Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407–425.

    PubMed  CAS  Google Scholar 

  161. Earnest JP, Santos GF, Zuerbig S, Fox JEB. Dystrophin-related protein in the platelet membrane skeleton. Integrin-induced change in detergent-insolubility and cleavage by calpain in aggregating platelets. J Biol Chem 1995; 27027259–27265.

    Google Scholar 

  162. Hartwig JH. Mechanism of actin rearrangements mediating platelet activation. J Cell Biol 1992; 118: 1421–1442.

    PubMed  CAS  Google Scholar 

  163. Barkalow K, Witke W, Kwiatkowski DJ, Hartwig JH. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol 1996; 134: 389–399.

    PubMed  CAS  Google Scholar 

  164. Janmey PA, Stossel TP. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 1987; 325: 362–364.

    PubMed  CAS  Google Scholar 

  165. Wahl M, Carpenter G. Selective phospholipase C activation. BioEssays 1991; 13: 107–113.

    PubMed  CAS  Google Scholar 

  166. Shariff A, Luna EJ. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 1992; 256: 245–247.

    PubMed  CAS  Google Scholar 

  167. Banno Y,Nakashima S, Ohzawa M, Nozawa Y. Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets. J Biol Chem 1996; 271:14989–14994.

    Google Scholar 

  168. Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp6o pp6o°-Y“, and the p21”’ GTPase-activating protein with the membrane skeleton. J Biol Chem 1993; 268: 25973–2984.

    PubMed  CAS  Google Scholar 

  169. Wu H, Reynolds AB, Danner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp6o“° substrate. Mol Cell Bio11991; 11: 5113–5124.

    Google Scholar 

  170. Wu H, RR, Parsons JT. Cortactin, an 8o/85-kilodalton pp6o“ substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993; 120: 1417–1426.

    PubMed  CAS  Google Scholar 

  171. Fox JEB, Shattil SJ, Kinlough-Rathbone RL, Richardson M, Packham MA, Sanan DA. The platelet cytoskeleton stabilizes the interaction between allbß, and its ligand and induces selective movements of ligand-occupied integrin. J Biol Chem 1996; 271: 7004–7011.

    PubMed  CAS  Google Scholar 

  172. Kovacsovics TJ, Hartwig JH. Thrombin-induced GPIb-IX centralization on the platelet surface requires actin assembly and myosin II activation. Blood 1996; 87: 618–629.

    PubMed  CAS  Google Scholar 

  173. Fox JEB, Phillips DR. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem 1982; 257: 4120–4126.

    PubMed  CAS  Google Scholar 

  174. Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS. Regulation of the protein tyrosine kinase pp72’Yk by platelet agonists and the integrin allbß7• J Biol Chem 1994; 269: 28859–28864.

    PubMed  CAS  Google Scholar 

  175. Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem 1996; 271: 7544–7550.

    PubMed  CAS  Google Scholar 

  176. Tohyama Y, Yanagi S, Sada K, Yamamura H. Translocation of p72’Yk to the cytoskeleton in thrombin-stimulated platelets. J Biol Chem 1994; 269: 327963 2799

    Google Scholar 

  177. Dash D, Aepfelbacher M, Siess W. Integrin aIIb-r,-mediated translocation of CDC42Hs to the cytoskeleton in stimulated human platelets. J Biol Chem 1995; 270: 17321–17326.

    PubMed  CAS  Google Scholar 

  178. Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. anbß,-(GPIIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 1996; 271: 10811–10815.

    PubMed  CAS  Google Scholar 

  179. Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 1993; 12: 4843–4856.

    PubMed  CAS  Google Scholar 

  180. Haimovich B, Regan C, DiFazio L, Ginalis E, Ji P, Purohit U, Rowley RB, Bolen J, Greco R. The FcyRII receptor triggers pp125FAK phosphorylation in platelets. J Biol Chem 1996; 271: 16332–16337.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Cell Adhesion and Motility. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics